Đề kiểm tra 15 phút – Chương 3 – Đề số 3 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề kiểm tra 15 phút – Chương 3 – Đề số 3 – Đại số và giải tích 11

Đề bài

Câu 1: Cho một cấp số cộng có \({u_1} =  - 3;{u_6} = 27\). Tìm \(d\)?

A.    \(d = 5\)                   B. \(d = 7\)

C. \(d = 6\)                      D. \(d = 8\)

Câu 2: Khẳng định nào sau đây là sai?

A.    Dãy số \(\dfrac{{ - 1}}{2};0;\dfrac{1}{2};1;\dfrac{3}{2};...\)là một cấp số cộng: \(\left\{ \begin{array}{l}{u_1} = \dfrac{{ - 1}}{2}\\d = \dfrac{1}{2}\end{array} \right.\)

B.     Dãy số \(\dfrac{1}{2};\dfrac{1}{{{2^2}}};\dfrac{1}{{{2^3}}};...\) là một cấp số cộng: \(\left\{ \begin{array}{l}{u_1} = \dfrac{1}{2}\\d = \dfrac{1}{2};n = 3\end{array} \right.\)

C.    Dãy số \( - 2; - 2; - 2; - 2;...\) là một cấp số cộng: \(\left\{ \begin{array}{l}{u_1} =  - 2\\d = 0\end{array} \right.\)

D.    Dãy số  \(0,1;\,\,\,0,01;\,\,\,0,001;\,\,\,0,0001;...\) không phải là một cấp số cộng.

Câu 3: Cho cấp số cộng \(({u_n})\) có : \({u_1} =  - 0,1;\,d = 0,1\). Số hạng thứ 7 của cấp số cộng này là

A. 1,6                            B. 6

C. 0,5                            D. 0,6

Câu 4: Xác định \(x\) để 3 số : \(1 - x;{x^2};1 + x\) theo thứ tự lập thành một cấp số cộng ?

A.    Không có giá trị nào của \(x\)           C. \(x =  \pm 1\)

B.     \(x =  \pm 2\)                                       D. \(x = 0\)

Câu 5: Cho cấp số cộng \(({u_n})\)có \({u_1} =  - 0,1;\,d = 1\). Khẳng định nào sau đây là đúng:

A.    Số hạng thứ 7 của cấp số cộng này là: 0,6                                        

B.     Số hạng thứ 6 của cấp số cộng này là:0,5

C.    Cấp số cộng này không có hai số 0,5 và 0,6

D.    Số hạng thứ 4 của cấp số cộng này là: 3,9

Câu 6: Tìm bốn số hạng liên tiếp của một cấp số cộng biết tổng của chúng bằng 20 và tổng các bình phương của chúng bằng 120.

A. 1, 5, 6, 8                     B. 2,4,6,8 

C. 1,4,6,9                        D. 1,4,7,8

Câu 7: Cho cấp số cộng \(({u_n})\) thỏa mãn \(\left\{ \begin{array}{l}{u_2} - {u_3} + {u_5} = 10\\{u_4} + {u_6} = 26\end{array} \right.\).

Tính \(S = {u_1} + {u_4} + {u_7} + ... + {u_{2011}}\)

A. \(S = 673015\)                 B. \(S = 6734134\) 

C. \(S = 673044\)                 D. \(S = 2023736\)

Câu 8: Cho dãy số \(({u_n})\) có d = -2, \({S_8} = 72\). Tính \({u_1}\)

A.    \({u_1} = 16\)          B. \({u_1} =  - 16\)

C. \({u_1} = \dfrac{1}{{16}}\)           D. \({u_1} =  - \dfrac{1}{{16}}\)

Câu 9: Cho dãy số \(({u_n})\) có \({u_1} =  - 1,d = 2,{S_n} = 483\). Tính số các số hạng của cấp số cộng?

A. n = 20                       B. n = 21

C. n = 22                       D. n = 23

Câu 10: Cho một cấp số cộng \(({u_n})\) có \({u_1} = 1\) và tổng 100 số hạng đầu bằng 24850. Tính

\(S = \dfrac{1}{{{u_1}{u_2}}} + \dfrac{1}{{{u_2}{u_3}}} + ... + \dfrac{1}{{{u_{49}}{u_{50}}}}\)

A.    \(S = \dfrac{9}{{246}}\)       B. \(S = \dfrac{4}{{23}}\)      C. \(S = 123\)       D. \(S = \dfrac{{49}}{{246}}\)

 

Lời giải chi tiết

1 2 3 4 5
C B C C C
6 7 8 9 10
B D A D D

Lời giải chi tiết

Câu 1: 

Ta có: \({u_n} = {u_1} + d\left( {n - 1} \right)\)

Khi đó ta có: \({u_6} = {u_1} + d\left( {6 - 1} \right) \Leftrightarrow 5d = {u_6} - {u_1} = 30 \Leftrightarrow d = 6\)

Chọn đáp án C.

Câu 2: 

Khẳng định sai là Dãy số \(\dfrac{1}{2};\dfrac{1}{{{2^2}}};\dfrac{1}{{{2^3}}};...\) là một cấp số cộng: \(\left\{ \begin{array}{l}{u_1} = \dfrac{1}{2}\\d = \dfrac{1}{2};n = 3\end{array} \right.\)

Chọn đáp án B.

Câu 3: 

Ta có: \({u_7} = {u_1} + d\left( {7 - 1} \right) =  - 0,1 + 0,1.6 = 0,5\)

Chọn đáp án C.

Câu 4: 

Theo yêu cầu bài toán: \(\dfrac{{1 - x + 1 + x}}{2} = {x^2} \Leftrightarrow {x^2} = 1 \Leftrightarrow x =  \pm 1\)

Chọn đáp án C.

Câu 5: 

Ta có: \({u_n} =  - 0,1 + n - 1 = n - 1,1\)

Cấp số cộng này không có hai số 0,5 và 0,6

Chọn đáp án C.

Câu 6: 

Ta có: \(\left\{ \begin{array}{l}{u_2} = {u_1} + d\\{u_3} = {u_1} + 2d\\{u_4} = {u_1} + 3d\end{array} \right.\)

Theo giải thiết ra có: \(\left\{ \begin{array}{l}4{u_1} + 6d = 20\\{u_1}^2 + {\left( {{u_1} + d} \right)^2} + {\left( {{u_1} + 2d} \right)^2} + {\left( {{u_1} + 3d} \right)^2} = 120\end{array} \right.\)

Giải hệ có \(\left\{ \begin{array}{l}{u_1} = 2\\d = 2\end{array} \right.\)

Chọn đáp án B.

Câu 7: 

Ta có:

\(\left\{ \begin{array}{l}{u_2} - {u_3} + {u_5} = 10\\{u_4} + {u_6} = 26\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}{u_1} + 3d = 10\\2{u_1} + 8d = 26\end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d = 3\end{array} \right.\)

Khi đó \(S = {u_1} + {u_4} + {u_7} + ... + {u_{2011}}\)

\(= {u_1} + {u_1} + 3d + {u_1} + 6d +  \ldots  + {u_1} + 2010d\)

\( = 671{u_1} + 3d\left( {1 + 2 + 3 +  \ldots  + 670} \right) \)

\(= 671.1 + 3.3.\dfrac{{670.671}}{2}\)

\(=2023736\)

Chọn đáp án D

Câu 8: 

Ta có: \({S_n} = \dfrac{{2{u_1} + d\left( {n - 1} \right)}}{2}.n \) \(\Rightarrow {S_8} = \dfrac{{2{u_1} - 2.7}}{2}.8 = 72\)

\( \Leftrightarrow 2{u_1} = 32 \Leftrightarrow {u_1} = 16\)

Chọn đáp án A.

Câu 9: 

Ta có: \({S_n} = \dfrac{{2{u_1} + d\left( {n - 1} \right)}}{2}.n \)

\(\Rightarrow {S_n} = \dfrac{{2\left( { - 1} \right) + 2.\left( {n - 1} \right)}}{2}.n = 483\)

\( \Leftrightarrow  - 2n + 2{n^2} - 2n = 966 \)

\(\Leftrightarrow 2{n^2} - 4n - 966 = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}n = 23\\n =  - 21\end{array} \right.\)

Chọn đáp án D.

Câu 10: 

Ta có: \({S_n} = \dfrac{{2{u_1} + d\left( {n - 1} \right)}}{2}.n\)

\(\Rightarrow {S_{100}} = \dfrac{{2\left( 1 \right) + d.\left( {100 - 1} \right)}}{2}.100 = 24850\)

Khi đó ta có:

\(S = \dfrac{1}{{{u_1}{u_2}}} + \dfrac{1}{{{u_2}{u_3}}} + ... + \dfrac{1}{{{u_{49}}{u_{50}}}} \)

\( = \dfrac{1}{{{u_1}\left( {{u_1} + d} \right)}} + \dfrac{1}{{{u_2}\left( {{u_2} + d} \right)}} + ... + \dfrac{1}{{{u_{49}}\left( {{u_{49}} + d} \right)}}\)

Ta có:

\(\dfrac{1}{{{u_k}\left( {{u_k} + d} \right)}} = \dfrac{1}{d}.\dfrac{d}{{{u_k}\left( {{u_k} + d} \right)}}\) \( = \dfrac{1}{d}.\dfrac{{\left( {{u_k} + d} \right) - {u_k}}}{{{u_k}\left( {{u_k} + d} \right)}}\)\( = \dfrac{1}{d}\left( {\dfrac{{{u_k} + d}}{{{u_k}\left( {{u_k} + d} \right)}} - \dfrac{{{u_k}}}{{{u_k}\left( {{u_k} + d} \right)}}} \right)\)  \( = \dfrac{1}{d}\left( {\dfrac{1}{{{u_k}}} - \dfrac{1}{{{u_k} + d}}} \right)\) \( = \dfrac{1}{d}\left( {\dfrac{1}{{{u_k}}} - \dfrac{1}{{{u_{k + 1}}}}} \right)\)

Suy ra:

\(S= \dfrac{1}{d}\left( {\dfrac{1}{{{u_1}}} - \dfrac{1}{{{u_2}}} + \dfrac{1}{{{u_2}}} - \dfrac{1}{{{u_3}}} +  \ldots  + \dfrac{1}{{{u_{49}}}} - \dfrac{1}{{{u_{50}}}}} \right)\)

\( \;\;\;= \dfrac{1}{5}\left( {\dfrac{1}{1} - \dfrac{1}{{1 + 5.49}}} \right) = \dfrac{{49}}{{246}}\)

Chọn đáp án D.

Xemloigiai.com

Xem thêm lời giải Đề thi, đề kiểm tra Toán lớp 11

Dưới đây là danh sách Đề thi, đề kiểm tra Toán lớp 11 chọn lọc, có đáp án, cực sát đề chính thức theo nội dung sách giáo khoa Lớp 11.

Đề thi giữa kì 1 Toán 11

Đề thi học kì 1 Toán 11

Đề thi giữa kì 2 Toán 11

Đề thi học kì 2 Toán 11

Đề kiểm tra 15 phút Toán 11

Đề kiểm tra 1 tiết Toán 11

Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.