Giải đề thi học kì 1 toán lớp 11 năm 2019 - 2020 trường THPT Trần Phú
Bài làm:
Câu 1. (1,5 đ) Giải phương trình lượng giác sau: \({\sin ^2}\left( {\dfrac{x}{2}} \right) - 2{\cos ^2}\left( {\dfrac{x}{4}} \right) + \dfrac{3}{4} = 0\).
Câu 2. (1đ) Tìm số hạng không chứa \(x\) trong khai triển của biểu thức: \({\left( {3{x^3} - \dfrac{2}{{{x^2}}}} \right)^5}\).
Câu 3. (1đ) Cho cấp số cộng \(\left( {{u_n}} \right)\) là một dãy số tăng thỏa mãn điều kiện \(\left\{ \begin{array}{l}{u_{31}} + {u_{34}} = 11\\u_{31}^2 + u_{34}^2 = 101\end{array} \right.\).
Tìm số hạng đầu tiên \({u_1}\), công sai \(d\) và số hạng tổng quát của cấp số cộng đó.
Câu 4. (1đ) Một hộp có chứa \(4\) quả cầu màu đỏ, \(5\) quả cầu màu xanh và \(7\) quả cầu màu vàng. Lấy ngẫu nhiên cùng lúc ra \(4\) quả cầu từ hộp đó. Tính xác suất sao cho \(4\) quả cầu được lấy ra có đúng \(1\) quả cầu màu đỏ và không quá \(2\) quả cầu màu vàng.
Câu 5. (1đ) Cho một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu tiên \({u_1} = 1\) và tổng \(100\) số hạng đầu bằng \(24850\). Tính \(S = \dfrac{1}{{{u_1}{u_2}}} + \dfrac{1}{{{u_2}{u_3}}} + \dfrac{1}{{{u_3}{u_4}}} + ...... + \dfrac{1}{{{u_{49}}{u_{50}}}}\).
Câu 6. (3đ) Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\). Gọi \(G\) là trọng tâm của tam giác \(SAD\). Lấy điểm \(M\) thuộc cạnh \(AB\) sao cho \(AB = 3AM\).
1) Tìm giao tuyến của mặt phẳng \(\left( {SAD} \right)\) và mặt phẳng \(\left( {GBC} \right)\).
Tìm giao điểm \(H\) của đường thẳng \(BC\) với mặt phẳng \(\left( {SGM} \right)\).
2) Chứng minh rằng đường thẳng \(MG\) song song với mặt phẳng \(\left( {SBC} \right)\).
3) Mặt phẳng \(\left( \alpha \right)\) đi qua \(M\) và song song với \(AD\) và \(SB\), \(\left( \alpha \right)\) cắt các cạnh \(CD,\,\,SD,\,\,SA\) lần lượt tại các điểm \(N,\,\,P,\,\,Q\).
Xác định thiết diện của mặt phẳng \(\left( \alpha \right)\) với hình chóp \(S.ABCD\).
Câu 7. (0,75 đ) Giải phương trình lượng giác sau: \(\dfrac{{\sin x + \sin 2x}}{{\sin 3x}} = - 1\).
Câu 8. (0,75 đ) Từ các chữ số \(0;1;2;3;4;5;6;7;8;9\) có thể lập được tất cả bao nhiêu số tự nhiên chẵn có năm chữ số khác nhau và trong năm chữ số đó có đúng hai chữ số lẻ và hai chữ số lẻ này không đứng cạnh nhau.
HƯỚNG DẪN GIẢI CHI TIẾT
Thực hiện: Ban chuyên môn xemloigiai.com
Câu 1(VD): Giải phương trình lượng giác sau: \({\sin ^2}\left( {\dfrac{x}{2}} \right) - 2{\cos ^2}\left( {\dfrac{x}{4}} \right) + \dfrac{3}{4} = 0\).
Phương pháp
Sử dụng công thức hạ bậc \({\sin ^2}\alpha = \dfrac{{1 - \cos 2\alpha }}{2};\) \({\cos ^2}\alpha = \dfrac{{1 + \cos 2\alpha }}{2}\)
Cách giải:
\({\sin ^2}\left( {\dfrac{x}{2}} \right) - 2{\cos ^2}\left( {\dfrac{x}{4}} \right) + \dfrac{3}{4} = 0\)
\( \Leftrightarrow \dfrac{{1 - \cos x}}{2} - 2.\dfrac{{1 + \cos \dfrac{x}{2}}}{2} + \dfrac{3}{4} = 0\) \( \Leftrightarrow 2 - 2\cos x - 4 - 4\cos \dfrac{x}{2} + 3 = 0\)
\( \Leftrightarrow \left( {2\cos x - 1} \right) + 4\cos \dfrac{x}{2} = 0\) \( \Leftrightarrow {\cos ^2}\dfrac{x}{2} + 4\cos \dfrac{x}{2} = 0\) \( \Leftrightarrow \cos \dfrac{x}{2}\left( {\cos \dfrac{x}{2} + 4} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\cos \dfrac{x}{2} = 0\\\cos \dfrac{x}{2} + 4 = 0\left( {VN} \right)\end{array} \right.\) \( \Leftrightarrow \dfrac{x}{2} = \dfrac{\pi }{2} + k\pi \) \( \Leftrightarrow x = \pi + k2\pi \)
Vậy phương trình có nghiệm \(x = \pi + k2\pi \), \(k \in \mathbb{Z}\).
Câu 2(VD): Tìm số hạng không chứa \(x\) trong khai triển của biểu thức: \({\left( {3{x^3} - \dfrac{2}{{{x^2}}}} \right)^5}\).
Phương pháp
Sử dụng công thức tính số hạng tổng quát \({T_{k + 1}} = C_n^k{a^{n - k}}{b^k}\).
Cách giải:
Số hạng tổng quát : \({T_{k + 1}} = C_5^k.{\left( {3{x^3}} \right)^{5 - k}}.{\left( { - \dfrac{2}{{{x^2}}}} \right)^k}\) \( = C_5^k{.3^{5 - k}}.{x^{15 - 3k}}.\dfrac{{{{\left( { - 2} \right)}^k}}}{{{x^{2k}}}}\) \( = C_5^k{.3^{5 - k}}.{\left( { - 2} \right)^k}.{x^{15 - 5k}}\)
Số hạng không chứa \(x\) ứng với \(15 - 5k = 0 \Leftrightarrow k = 3\)
Vậy số hạng không chứa \(x\) là \(C_5^3{.3^{5 - 3}}.{\left( { - 2} \right)^3} = - 720\).
Câu 3(VD): Cho cấp số cộng \(\left( {{u_n}} \right)\) là một dãy số tăng thỏa mãn điều kiện \(\left\{ \begin{array}{l}{u_{31}} + {u_{34}} = 11\\u_{31}^2 + u_{34}^2 = 101\end{array} \right.\).
Tìm số hạng đầu tiên \({u_1}\), công sai \(d\) và số hạng tổng quát của cấp số cộng đó.
Phương pháp
Sử dụng công thức: \({u_n} = {u_1} + \left( {n - 1} \right)d\).
Cách giải:
Ta có : \(\left\{ \begin{array}{l}{u_{31}} + {u_{34}} = 11\\u_{31}^2 + u_{34}^2 = 101\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{u_{34}} = 11 - {u_{31}}\\u_{31}^2 + {\left( {11 - {u_{31}}} \right)^2} = 101\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{u_{34}} = 11 - {u_{31}}\\2u_{31}^2 - 22{u_{31}} + 121 = 101\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{u_{34}} = 11 - {u_{31}}\\2u_{31}^2 - 22{u_{31}} + 20 = 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{u_{34}} = 11 - {u_{31}}\\{u_{31}} = 2,{u_{31}} = 10\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}{u_{31}} = 2,{u_{34}} = 9\\{u_{31}} = 10,{u_{34}} = 1\end{array} \right.\)
Mà dãy \(\left( {{u_n}} \right)\) tăng nên \({u_{34}} > {u_{31}}\), do đó \({u_{31}} = 2,{u_{34}} = 9\)
\( \Rightarrow \left\{ \begin{array}{l}{u_1} + 30d = 2\\{u_1} + 33d = 9\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}d = \dfrac{7}{3}\\{u_1} = - 68\end{array} \right.\)
Số hạng tổng quát \({u_n} = - 68 + \dfrac{7}{3}\left( {n - 1} \right)\).
Vậy \({u_1} = - 68,d = \dfrac{7}{3},\)\({u_n} = - 68 + \dfrac{7}{3}\left( {n - 1} \right)\).
Câu 4(VD): Một hộp có chứa \(4\) quả cầu màu đỏ, \(5\) quả cầu màu xanh và \(7\) quả cầu màu vàng. Lấy ngẫu nhiên cùng lúc ra \(4\) quả cầu từ hộp đó. Tính xác suất sao cho \(4\) quả cầu được lấy ra có đúng \(1\) quả cầu màu đỏ và không quá \(2\) quả cầu màu vàng.
Phương pháp
- Tính số phần tử không gian mẫu \(n\left( \Omega \right)\)
- Tính số khả năng có lợi cho biến cố \(A\) đã cho.
- Tính xác suất \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega \right)}}\).
Cách giải:
Chọn \(4\) trong \(16\) quả cầu, \(n\left( \Omega \right) = C_{16}^4 = 1820\).
Gọi \(A\) là biến cố: “Có đúng \(1\) quả cầu đỏ và không quá \(2\) quả cầu vàng”
TH1: Chọn được \(1\) quả cầu đỏ, \(2\) quả cầu vàng, \(1\) quả cầu xanh có \(C_4^1.C_7^2.C_5^1 = 420\) cách.
TH2: Chọn được \(1\) quả cầu đỏ, \(1\) quả cầu vàng, \(2\) quả cầu xanh có \(C_4^1.C_7^1.C_5^2 = 280\) cách.
TH3: Chọn được \(1\) quả cầu đỏ, \(0\) quả cầu vàng, \(3\) quả cầu xanh có \(C_4^1.C_7^0.C_5^3 = 40\) cách.
Do đó \(n\left( A \right) = 420 + 280 + 40 = 740\).
Xác suất \(P\left( A \right) = \dfrac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \dfrac{{740}}{{1820}} = \dfrac{{37}}{{91}}\).
Câu 5(VD): Cho một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu tiên \({u_1} = 1\) và tổng \(100\) số hạng đầu bằng \(24850\). Tính \(S = \dfrac{1}{{{u_1}{u_2}}} + \dfrac{1}{{{u_2}{u_3}}} + \dfrac{1}{{{u_3}{u_4}}} + ...... + \dfrac{1}{{{u_{49}}{u_{50}}}}\).
Phương pháp
- Tìm CSC đã cho bằng cách sử dụng công thức \({S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\)
- Thay vào tổng đã cho tính toán.
Cách giải:
Ta có : \(24850 = {S_{100}} = \dfrac{{100\left( {2.1 + 99d} \right)}}{2}\)\( \Leftrightarrow d = 5\)
Khi đó \({u_1} = 1,{u_2} = 6,{u_3} = 11,{u_4} = 16,...\) \({u_{49}} = {u_1} + 48d = 241\), \({u_{50}} = {u_1} + 49d = 246\)
\( \Rightarrow S = \dfrac{1}{{{u_1}{u_2}}} + \dfrac{1}{{{u_2}{u_3}}} + ... + \dfrac{1}{{{u_{49}}.{u_{50}}}}\) \( = \dfrac{1}{{1.6}} + \dfrac{1}{{6.11}} + \dfrac{1}{{11.16}} + ... + \dfrac{1}{{241.246}}\)
\( = \dfrac{1}{5}\left( {\dfrac{1}{1} - \dfrac{1}{6}} \right) + \dfrac{1}{5}\left( {\dfrac{1}{6} - \dfrac{1}{{11}}} \right) + \) \(... + \dfrac{1}{5}\left( {\dfrac{1}{{241}} - \dfrac{1}{{246}}} \right)\)
\( = \dfrac{1}{5}\left( {1 - \dfrac{1}{6} + \dfrac{1}{6} - \dfrac{1}{{11}} + ... + \dfrac{1}{{241}} - \dfrac{1}{{246}}} \right)\)
\( = \dfrac{1}{5}\left( {1 - \dfrac{1}{{246}}} \right) = \dfrac{{49}}{{246}}\)
Vậy \(S = \dfrac{{49}}{{246}}\).
Câu 6(VD): Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành tâm \(O\). Gọi \(G\) là trọng tâm của tam giác \(SAD\). Lấy điểm \(M\) thuộc cạnh \(AB\) sao cho \(AB = 3AM\).
Phương pháp
a) Sử dụng định lí ba giao tuyến song song: \(\left\{ \begin{array}{l}\left( \alpha \right) \cap \left( \beta \right) = {d_1}\\\left( \beta \right) \cap \left( \gamma \right) = {d_2}\\\left( \alpha \right) \cap \left( \gamma \right) = {d_3}\\{d_1}//{d_2}\end{array} \right. \Rightarrow {d_3}//{d_1}//{d_2}\).
b) Sử dụng định lí \(\left\{ \begin{array}{l}a \not\subset \left( P \right)\\a//b\\b \subset \left( P \right)\end{array} \right. \Rightarrow a//\left( P \right)\).
c) Sử dụng hệ quả \(\left\{ \begin{array}{l}a//\left( P \right)\\a \subset \left( Q \right)\\\left( P \right) \cap \left( Q \right) = d\end{array} \right. \Rightarrow a//d\).
Cách giải:
1) Tìm giao tuyến của mặt phẳng \(\left( {SAD} \right)\) và mặt phẳng \(\left( {GBC} \right)\). Tìm giao điểm \(H\) của đường thẳng \(BC\) với mặt phẳng \(\left( {SGM} \right)\).
Dễ thấy \(G \in \left( {GBC} \right) \cap \left( {SAD} \right)\).
Xét các mặt phẳng: \(\left( {GBC} \right),\left( {SAD} \right),\left( {ABCD} \right)\) có:
\(\left\{ \begin{array}{l}\left( {GBC} \right) \cap \left( {SAD} \right) = Gx\\\left( {SAD} \right) \cap \left( {ABCD} \right) = AD\\\left( {ABCD} \right) \cap \left( {GBC} \right) = BC\\BC//AD\end{array} \right.\) \( \Rightarrow Gx//AB//CD\)
Vậy \(\left( {SAD} \right) \cap \left( {GBC} \right) = Gx\) là đường thẳng đi qua \(G\) và song song \(AD\).
Gọi \(I\) là trung điểm \(AD\), khi đó \(\left( {SGM} \right) \equiv \left( {SIM} \right)\).
Trong \(\left( {ABCD} \right)\), gọi \(H = IM \cap BC\) \( \Rightarrow \left\{ \begin{array}{l}H \in IM \subset \left( {SIM} \right)\\H \in BC\end{array} \right.\) \( \Rightarrow H = BC \cap \left( {SMG} \right)\).
2) Chứng minh rằng đường thẳng \(MG\) song song với mặt phẳng \(\left( {SBC} \right)\)
Vì \(AD//BC\) nên \(\dfrac{{MI}}{{MH}} = \dfrac{{MA}}{{MB}} = \dfrac{1}{2}\)
Xét tam giác \(SIH\) có \(\dfrac{{MI}}{{MH}} = \dfrac{{GI}}{{GS}} = \dfrac{1}{2}\) nên theo định lí Talet ta có \(MG//SH\).
Mà \(SH \subset \left( {SBC} \right)\) nên \(MG//\left( {SBC} \right)\).
3) Mặt phẳng \(\left( \alpha \right)\) đi qua \(M\) và song song với \(AD\) và \(SB\), \(\left( \alpha \right)\) cắt các cạnh \(CD,\,\,SD,\,\,SA\) lần lượt tại các điểm \(N,\,\,P,\,\,Q\). Xác định thiết diện của mặt phẳng \(\left( \alpha \right)\) với hình chóp \(S.ABCD\).
Ta có:
\(\left\{ \begin{array}{l}SB//\left( \alpha \right)\\SB \subset \left( {SAB} \right)\\\left( \alpha \right) \cap \left( {SAB} \right) = MQ\end{array} \right.\) \( \Rightarrow MQ//SB\)
\( \Rightarrow \) Trong \(\left( {SAB} \right)\), kẻ \(Mx//SB\) cắt \(SA\) tại \(Q\).
\(\left\{ \begin{array}{l}AD//\left( \alpha \right)\\AD \subset \left( {SAD} \right)\\\left( \alpha \right) \cap \left( {SAD} \right) = QP\end{array} \right.\) \( \Rightarrow QP//AD\)
\( \Rightarrow \) Trong \(\left( {SAD} \right)\), kẻ \(Qy//AD\) cắt \(SD\) tại \(P\).
\(\left\{ \begin{array}{l}AD//\left( \alpha \right)\\AD \subset \left( {ABCD} \right)\\\left( \alpha \right) \cap \left( {ABCD} \right) = MN\end{array} \right.\) \( \Rightarrow MN//AD\)
\( \Rightarrow \) Trong \(\left( {ABCD} \right)\), kẻ \(Mt//AD\) cắt \(CD\) tại \(N\).
Khi đó
\(\begin{array}{l}\left( \alpha \right) \cap \left( {SAB} \right) = MQ\\\left( \alpha \right) \cap \left( {SAD} \right) = QP\\\left( \alpha \right) \cap \left( {SCD} \right) = PN\\\left( \alpha \right) \cap \left( {ABCD} \right) = NM\end{array}\)
\( \Rightarrow \) Thiết diện là tứ giác \(MNPQ\).
Câu 7(VD): Giải phương trình lượng giác sau: \(\dfrac{{\sin x + \sin 2x}}{{\sin 3x}} = - 1\).
Phương pháp
- Sử dụng công thức cộng \(\sin a + \sin b = 2\sin \dfrac{{a + b}}{2}\cos \dfrac{{a - b}}{2}\) biến đổi phương trình về dạng tích.
- Giải phương trình và đối chiếu điều kiện, kết luận nghiệm.
Cách giải:
ĐK: \(\sin 3x \ne 0 \Leftrightarrow 3x \ne k\pi \) \( \Leftrightarrow x \ne \dfrac{{k\pi }}{3}\)
PT\( \Rightarrow \sin x + \sin 2x = - \sin 3x\) \( \Leftrightarrow \left( {\sin x + \sin 3x} \right) + \sin 2x = 0\)
\( \Leftrightarrow 2\sin 2x\cos x + \sin 2x = 0\) \( \Leftrightarrow \sin 2x\left( {2\cos x + 1} \right) = 0\)
\( \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\2\cos x + 1 = 0\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 0\\\cos x = - \dfrac{1}{2}\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}2x = k\pi \\x = \pm \dfrac{\pi }{3} + k2\pi \end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{k\pi }}{2}\\x = \pm \dfrac{\pi }{3} + k2\pi \end{array} \right.,k \in \mathbb{Z}\)
Biểu diễn các nghiệm trên đường tròn lượng giác ta được:
Quan sát hình vẽ ta thấy phương trình có nghiệm \(x = \dfrac{\pi }{2} + k\pi \), \(k \in \mathbb{Z}\) (hai điểm màu xanh).
Câu 8(VD): Từ các chữ số \(0;1;2;3;4;5;6;7;8;9\) có thể lập được tất cả bao nhiêu số tự nhiên chẵn có năm chữ số khác nhau và trong năm chữ số đó có đúng hai chữ số lẻ và hai chữ số lẻ này không đứng cạnh nhau.
Phương pháp
- Đếm các số chẵn có \(5\) chữ số khác nhau mà có đúng hai chữ số lẻ.
- Đếm các số chẵn có \(5\) chữ số khác nhau mà có hai chữ số lẻ đứng cạnh nhau.
- Trừ các kết quả cho nhau ta dược đáp số.
Cách giải:
Gọi số có năm chữ số có dạng \(\overline {abcde} \).
TH1: \(e = 0\) có \(1\) cách chọn.
Chọn \(2\) chữ số lẻ và \(2\) chữ số chẵn và xếp vị trí cho chúng có \(C_5^2.C_4^2.4!\) cách chọn.
Do đó có \(C_5^2.C_4^2.4!\) số.
TH2: \(e \in \left\{ {2;4;6;8} \right\}\) có \(4\) cách chọn.
+) Nếu \(a\) chẵn, \(a \ne 0,a \ne e\) thì có \(3\) cách chọn.
Số cách chọn 3 chữ số còn lại (\(1\) chữ số chẵn và \(2\) chữ số lẻ) và xếp vị trí cho chúng là \(C_3^1.C_5^2.3!\) cách chọn.
Do đó có \(3.C_3^1.C_5^2.3!\) số.
+) Nếu \(a\) lẻ thì có \(5\) cách chọn.
Số cách chọn 3 chữ số còn lại (\(2\) chữ số chẵn và \(1\) chữ số lẻ) và xếp vị trí cho chúng là \(C_4^2.C_4^1.3!\) cách chọn.
Do đó có \(5.C_4^2.C_4^1.3!\) số.
Khi đó số các số chẵn có \(5\) chữ số khác nhau mà chỉ có đúng \(2\) chữ số lẻ là \(C_5^2.C_4^2.4! + 4.\left( {3.C_3^1.C_5^2.3! + 5.C_4^2.C_4^1.3!} \right) = 6480\) số.
Ta tính số các số chẵn có \(5\) chữ số khác nhau chỉ có \(2\) chữ số lẻ mà chúng đứng cạnh nhau.
Coi hai chữ số lẻ đứng cạnh nhau là một chữ số \(A\), có \(A_5^2\) cách chọn và sắp xếp vị trí của hai chữ số trong \(A\).
Số có dạng \(\overline {abcd} \) với \(a,b,c,d \in \left\{ {A;0;2;4;6;8} \right\}\).
+) Nếu \(a = A\) thì có \(A_5^3\) cách chọn \(b,c,d\).
+) Nếu \(a \ne A,a \ne 0\) thì có \(4\) cách chọn.
\(A\) có thể đứng ở vị trí \(b\) hoặc \(c\) nên có \(2\) cách xếp.
Có \(A_4^2\) cách chọn và sắp xếp hai chữ số còn lại.
Do đó có \(A_5^2\left( {A_5^3 + 4.2.A_4^2} \right) = 3120\)
Vậy có \(6480 - 3120 = 3360\) số.
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Đề thi học kì 1 của các trường có lời giải – Mới nhất
Bài tập & Lời giải:
- 👉 Giải đề thi học kì 1 môn Toán lớp 11 trường THPT Chuyên Lê Hồng Phong năm 2020-2021 có đáp án và lời giải chi tiết
- 👉 Giải đề thi học kì 1 toán lớp 11 năm 2020-2021 Sở GD-ĐT tỉnh Kon Tum
- 👉 Giải đề thi học kì 1 toán lớp 11 năm 2019 - 2020 trường THPT Nguyễn Tất Thành
- 👉 Giải đề thi học kì 1 toán lớp 11 năm 2019 - 2020 trường THPT chuyên Trần Đại Nghĩa
- 👉 Giải đề thi học kì 1 toán lớp 11 năm 2019 - 2020 sở giáo dục Vĩnh Phúc
- 👉 Đề thi học kì 1 môn toán lớp 11 năm 2019 - 2020 sở GDĐT Bắc Ninh
- 👉 Đề thi kì 1 môn toán lớp 11 năm 2019 - 2020 trường THPT Trần Hưng Đạo Thanh Xuân
- 👉 Đề thi kì 1 môn toán lớp 11 năm 2019 - 2020 trường THPT Kim Liên
Xem thêm lời giải Đề thi, đề kiểm tra Toán lớp 11
Dưới đây là danh sách Đề thi, đề kiểm tra Toán lớp 11 chọn lọc, có đáp án, cực sát đề chính thức theo nội dung sách giáo khoa Lớp 11.
Đề thi giữa kì 1 Toán 11
- 👉 Đề ôn tập giữa học kì 1 – Có đáp án và lời giải
- 👉 Đề thi giữa học kì 1 của các trường có lời giải – Mới nhất
Đề thi học kì 1 Toán 11
- 👉 Đề cương học kì I
- 👉 Đề thi học kì 1 mới nhất có lời giải
- 👉 Đề ôn tập học kì 1 – Có đáp án và lời giải
- 👉 Đề thi học kì 1 của các trường có lời giải – Mới nhất
Đề thi giữa kì 2 Toán 11
- 👉 Đề ôn tập giữa kì 2- Có đáp án và lời giải chi tiết
- 👉 Đề thi giữa học kì 2 của các trường có lời giải – Mới nhất
Đề thi học kì 2 Toán 11
Đề kiểm tra 15 phút Toán 11
- 👉 Đề kiểm tra 15 phút – Chương 1 – Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút – Chương 2 – Đại số và giải tích 11
- 👉 Đề kiểm tra 15 phút – Chương 3 – Đại số và giải tích 11
- 👉 Đề kiểm tra 15 phút - Chương 4 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút - Chương 5 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút - Chương 1 - Hình học 11
- 👉 Đề kiểm tra 15 phút - Chương 2 - Hình học 11
- 👉 Đề kiểm tra 15 phút - Chương 3 - Hình học 11
Đề kiểm tra 1 tiết Toán 11
- 👉 Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đại số và giải tích 11
- 👉 Đề kiểm tra 45 phút (1 tiết) – Chương 2 – Đại số và giải tích 11
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 45 phút (1 tiết ) - Chương 5 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 45 phút ( 1 tiết) - Chương 1 - Hình học 11
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 11
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 11
Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc
Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Toán Học
- Đề thi, đề kiểm tra Toán lớp 11
- SBT Toán lớp 11 Nâng cao
- SBT Toán 11 Nâng cao
- SGK Toán 11 Nâng cao
- SBT Toán lớp 11
- SGK Toán lớp 11
Vật Lý
- SBT Vật lí 11 Nâng cao
- SGK Vật lí lớp 11 Nâng cao
- SBT Vật lí lớp 11
- SGK Vật lí lớp 11
- Giải môn Vật lí lớp 11
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 11
- SBT Hóa học 11 Nâng cao
- SGK Hóa học lớp 11 Nâng cao
- SBT Hóa lớp 11
- SGK Hóa lớp 11
Ngữ Văn
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 11
- SGK Sinh lớp 11 Nâng cao
- SBT Sinh lớp 11
- SGK Sinh lớp 11
- Giải môn Sinh học lớp 11
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 11 mới
- SBT Tiếng Anh lớp 11
- SGK Tiếng Anh lớp 11
- SBT Tiếng Anh lớp 11 mới
- SGK Tiếng Anh lớp 11 Mới