Phần câu hỏi bài 10 trang 119, 120 Vở bài tập toán 9 tập 2
Bài làm:
Câu 23
Diện tích hình vành khăn giữa hai đường tròn đồng tâm \((O ; R)\) và \((O ; r) (R > r)\) là \(12,5\pi \,c{m^2}\). Tiếp tuyến tại \(M\) của đường tròn \((O ; r)\) cắt đường tròn \((O ; R)\) tại \(A\) và \(B\). Độ dài dây cung \(AB\) của đường tròn lớn tiếp xúc với đường tròn nhỏ là:
(A) \(5:\sqrt 2 \) (B) \(5\)
(C) \(5\sqrt 2 \) (D) \(10\)
Khoanh tròn vào chữ cái trước kết quả đúng.
Phương pháp giải:
+ Sử dụng công thức tính diện tích hình tròn bán kính \(R\) là \(S = \pi {R^2}\), từ đó suy ra diện tích hình vành khăn
+ Sử dụng quan hệ giữa đường kính và dây cung, định lý Pytago để tính toán.
Lời giải chi tiết:
Diện tích hình tròn \(\left( {O;R} \right)\) là \({S_1} = \pi {R^2}\,\left( {c{m^2}} \right)\) , diện tích hình tròn \(\left( {O;r} \right)\) là \({S_2} = \pi {r^2}\,\left( {c{m^2}} \right)\)
Suy ra diện tích hình vành khăn là \(S = {S_1} - {S_2} = \pi {R^2} - \pi {r^2}\,\,\left( {c{m^2}} \right)\)
Từ bài cho ta có \(S = 12,5\pi \,\left( {c{m^2}} \right) \Rightarrow \pi {R^2} - \pi {r^2}\)\( = 12,5\pi \Leftrightarrow {R^2} - {r^2} = 12,5\)
Xét đường tròn \(\left( {O;r} \right)\) có \(AB\) là tiếp tuyến tại \(M \Rightarrow OM \bot AB\)
Xét \(\left( {O;R} \right)\) có \(OM \bot AB\) nên \(M\) là trung điểm \(AB\) (quan hệ giữa dây và đường kính), suy ra \(AB = 2MB.\)
Xét tam giác \(OMB\) vuông tại \(M\), theo định lý Pytago ta có \(MB = \sqrt {O{B^2} - O{M^2}} = \sqrt {{R^2} - {r^2}} \) mà \({R^2} - {r^2} = 12,5\)(cmt) và \(AB = 2MB\) (cmt) nên \(AB = 2\sqrt {{R^2} - {r^2}} = 2\sqrt {12,5} \)\(= 5\sqrt 2 \,cm.\)
Chọn C.
Câu 24
Một hình vuông cạnh a và một đường tròn bán kính r có chu vi bằng nhau. Tỉ số giữa diện tích hình tròn và diện tích hình vuông là:
(A) \(4:\pi \) (B) \(\sqrt 2 :\pi \)
(C) \(\pi :\sqrt 2 \) (D) \(\pi :4\)
Khoanh tròn vào chữ cái trước kết quả đúng.
Phương pháp giải:
+ Hình vuông cạnh \(a\) có chu vi là \(4.a\) và diện tích là \({a^2}\)
+ Đường tròn bán kính \(r\) có chu vi \(C = 2\pi r\) và diện tích hình tròn là \(S = \pi {r^2}\)
Lời giải chi tiết:
Ta có:
Hình vuông cạnh \(a\) có chu vi là \(4.a\) và diện tích là \({a^2}\) và đường tròn bán kính \(r\) có chu vi \(C = 2\pi r\) và diện tích hình tròn là \(S = \pi {r^2}\) .
Vì theo giả thiết thì hình vuông và đường tròn có chu vi bằng nhau nên \(4a = 2\pi r \Rightarrow \dfrac{r}{a} = \dfrac{2}{\pi }\)
Tỉ số giữa diện tích hình tròn và diện tích hình vuông là \(\dfrac{{\pi {r^2}}}{{{a^2}}} = \pi {\left( {\dfrac{r}{a}} \right)^2} = \pi .\dfrac{4}{{{\pi ^2}}} = \dfrac{4}{\pi } = 4:\pi \) (vì \(\dfrac{r}{a} = \dfrac{2}{\pi }\) (cmt))
Chọn A.
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Bài 10. Diện tích hình tròn, quạt tròn
Xem thêm lời giải Vở bài tập Toán 9
PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 9 TẬP 1
PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 9 TẬP 1
PHẦN ĐẠI SỐ - VỞ BÀI TẬP TOÁN 9 TẬP 2
- 👉 CHƯƠNG 3: HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN
- 👉 CHƯƠNG 4: HÀM SỐ y=ax^2 (a khác 0) - PHƯƠNG TRÌNH BẬC HAI MỘT ẨN
PHẦN HÌNH HỌC - VỞ BÀI TẬP TOÁN 9 TẬP 2
Lớp 9 | Các môn học Lớp 9 | Giải bài tập, đề kiểm tra, đề thi Lớp 9 chọn lọc
Danh sách các môn học Lớp 9 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Bài soạn văn lớp 12 siêu ngắn
Toán Học
- Đề thi, đề kiểm tra Toán lớp 9
- Đề thi vào 10 môn Toán
- Tài liệu Dạy - học Toán 9
- SBT Toán lớp 9
- Vở bài tập Toán 9
- SGK Toán lớp 9
Vật Lý
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 9
- Tài liệu Dạy - học Hóa học 9
- SBT Hóa lớp 9
- SGK Hóa lớp 9
- Giải môn Hóa học lớp 9
Ngữ Văn
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 9
- SBT Sinh lớp 9
- Vở bài tập Sinh học 9
- SGK Sinh lớp 9
- Giải môn Sinh học lớp 9
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 9 mới
- Đề thi vào 10 môn Anh
- SBT Tiếng Anh lớp 9
- SGK Tiếng Anh lớp 9
- SBT Tiếng Anh lớp 9 mới
- Vở bài tập Tiếng Anh 9
- SGK Tiếng Anh lớp 9 Mới