Bài 13 trang 225 Sách bài tập Hình học lớp 12 Nâng cao

Trong không gian Oxyz cho bốn điểm

Bài làm:

Trong không gian Oxyz cho bốn điểm A(1 ; 0 ; 2), B(1 ; 1 ; 0), C(0 ; 0 ; 1) và D( 1 ; 1 ; 1).

1. Chứng minh A, B,C, D là bốn đỉnh của một khối tứ diện.

2. Tính thể tích khối tứ diện ABCD.

3. Viết phương trình đường cao của tứ diện ABCD hạ từ đỉnh D.

4. Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD.

5. Viết phương trình mặt phẳng tiếp xúc với mặt cầu (S) tại đỉnh A.

6. Xác định toạ độ của điểm A' đối xứng với điểm A qua mp(BCD).

7. Tính khoảng cách giữa hai đường thẳng ACBD.

Giải

1. \(\overrightarrow {CA} {\rm{ }} = {\rm{ }}\left( {{\rm{ }};{\rm{ }}0{\rm{ }};{\rm{ }}1} \right),{\rm{ }}\overrightarrow {CB} {\rm{ }} = \left( {1{\rm{ }};{\rm{ }}1{\rm{ }}; - 1} \right),{\rm{ }}\overrightarrow {CD} {\rm{ }} = \left( {1{\rm{ }};{\rm{ }}1{\rm{ }};{\rm{ }}0} \right)\)

\( =  > \left[ {\overrightarrow {CA} ,\overrightarrow {CB} } \right] = ( - 1;2;1)\)

\(\Rightarrow \left[ {\overrightarrow {CA} ,\overrightarrow {CB} } \right].\overrightarrow {CD = } 1 \ne 0\)

=> A, B, C, D không đồng phẳng hay A, B, C, D là bốn đỉnh của một khối tứ diện.

2. \({V_{ABCD}} = {1 \over 6}\left| {\left[ {\overrightarrow {CA} ,\overrightarrow {CB} } \right].\overrightarrow {CD} } \right| = {1 \over 6}.\)

3. Vectơ chỉ phương của đường cao tứ diện hạ từ đỉnh D có thế lấy là vectơ pháp tuyến của mp(ABC) hay vectơ \(\left[ {\overrightarrow {CA} ,\overrightarrow {CB} } \right]{\rm{ }} = {\rm{ }}\left( { - 1{\rm{ }};{\rm{ }}2{\rm{ }};{\rm{ }}1} \right).\)

Vậy đường cao đó có phương trình chính tắc là \({{x - 1} \over { - 1}} = {{y - 1} \over 2} = {{z - 1} \over 1}.\)

4. Phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD có dạng

         \({x^2} + {\rm{ }}{y^2} + {\rm{ }}{z^2} - {\rm{ }}2ax{\rm{ }} - {\rm{ }}2by{\rm{ }} - {\rm{ }}2cz{\rm{ }} + {\rm{ }}d{\rm{ }} = {\rm{ }}0.\)

Do A, B, C, D thuộc (S) nên ta có hệ phương trình

          \(\left\{ {\matrix{   {2a{\rm{ }} + {\rm{ }}4c - d - 5{\rm{ }} = {\rm{ }}0} \hfill  \cr   {2a{\rm{ }} + {\rm{ }}2b - d - 2{\rm{ }} = {\rm{ }}0} \hfill  \cr   {2c - d - {\rm{ 1}} = {\rm{ }}0} \hfill  \cr   {2a{\rm{ }} + {\rm{ }}2b{\rm{ }} + {\rm{ }}2c - d - 3{\rm{ }} = {\rm{ }}0.} \hfill  \cr  } } \right.\)

Giải hệ ta có : \(a = {3 \over 2},b =  - {1 \over 2},c = {1 \over 2},d = 0.\)

Vậy phương trình mặt cầu (S) là

\({x^2} + {\rm{ }}{y^2} + {\rm{ }}{z^2} - 3x{\rm{ }} + {\rm{ }}y - z{\rm{ }} = {\rm{ }}0.\)

Suy ra (S) có tâm là \(I\left( {{3 \over 2}; - {1 \over 2};{1 \over 2}} \right)\) và bán kính \(R{\rm{ }} = {{\sqrt {11} } \over 2}.\)

5. Mặt phẳng tiếp xúc với mặt cầu (S) tại A có vectơ pháp tuyến là

\(\overrightarrow {AI}  = \left( {{1 \over 2}; - {1 \over 2}; - {3 \over 2}} \right) = {1 \over 2}\left( {1; - 1; - 3} \right).\)

Vậy phương trình mặt phẳng cần tìm là

\(\matrix{   {\left( {x{\rm{ }} - {\rm{ }}1} \right){\rm{ }} - {\rm{ }}\left( {y{\rm{ }} - {\rm{ }}0} \right){\rm{ }} - {\rm{ }}3\left( {z{\rm{ }} - {\rm{ }}2} \right){\rm{ }} = {\rm{ }}0} \hfill  \cr   { <  =  > x - y - 3z{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}0.} \hfill  \cr  } \)

6. Ta viết phương trình mp(BCD), đó là mặt phẳng đi qua \(C\left( {0{\rm{ }};{\rm{ }}0{\rm{ }};{\rm{ }}1} \right)\) và các vectơ pháp tuyến \(\overrightarrow n {\rm{  = }}\left[ {\overrightarrow {CB} ,\overrightarrow {CD} } \right] = {\rm{ }}\left( {1{\rm{ }}; - {\rm{ }}1{\rm{ }};{\rm{ }}0} \right).\)

Vậy mp(BCD) có phương trình : \(x - y{\rm{ }} = 0.\)

Đường thẳng qua A và vuông góc với mp(BCD) có phương trình là

            \(\left\{ \matrix{  x = 1 + t \hfill \cr  y =  - t \hfill \cr  z = 2. \hfill \cr}  \right.\)

Gọi K là giao điểm của đường thẳng này với mp(BCD), toạ độ của K là nghiệm của hệ

           \(\left\{ \matrix{  x = 1 + t \hfill \cr  y =  - t \hfill \cr  z = 2 \hfill \cr  x - y = 0 \hfill \cr}  \right. \Rightarrow K = \left( {{1 \over 2};{1 \over 2};2} \right).\)

A ' là điểm đối xứng với A qua mp(BCD) nên ta có

            \(\left\{ \matrix{  {x_{A'}} + {x_A} = 2{x_K} \hfill \cr  {y_{A'}} + {y_A} = 2{y_K} \hfill \cr  {z_{A'}} + {z_A} = 2{z_K} \hfill \cr}  \right. \Rightarrow A' = \left( {0;1;2} \right).\)

7. Dễ dàng nhận thấy BD song song với mp(xOz) mà mp(xOz) chứa AC nên \(d\left( {AC,BD} \right){\rm{ }} = {\rm{ }}d\left( {B,\left( {xOz} \right)} \right){\rm{ }} = 1.\)

Xemloigiai.com

Xem thêm lời giải SBT Toán 12 Nâng cao

Lời giải chi tiết, đáp án bài tập SBT Giải tích, Hình học 12 Nâng cao. Tất cả lý thuyết, bài tập vận dụng, thực hành Toán 12 Nâng cao

PHẦN SBT GIẢI TÍCH 12 NÂNG CAO

PHẦN SBT HÌNH HỌC 12 NÂNG CAO

CHƯƠNG I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

CHƯƠNG IV: SỐ PHỨC

CHƯƠNG I: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

CHƯƠNG II: MẶT CẦU, MẶT TRỤ, MẶT NÓN

CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.