Bài 14 trang 225 Sách bài tập Hình học lớp 12 Nâng cao
Bài làm:
Trong không gian Oxyz cho mp(P) \(:x + 2y{\rm{ }} - {\rm{ }}z + {\rm{ }}5{\rm{ }} = {\rm{ }}0\) và đường thẳng
\(d:{{x + 1} \over 2} = y + 1 = z - 3.\)
1. Tim toạ độ giao điểm A của d và (P).
2. Tính góc \(\alpha \) giữa đường thẳng d và mp(P).
3. Viết phương trình mp(Q) chứa đường thẳng d và vuông góc với mp(P).
4. Viết phương trình hình chiếu vuông góc d' của d trên mp(P).
5. Viết phương trình đường thẳng nằm trong mp(P) chứa A và vuông góc với đường thẳng d.
6. Viết phương trình mặt cầu có tâm I nằm trên đường thẳng d, tiếp xúc với mp(P) và có bán kính \(R = \sqrt 6 .\)
7. Viết phương trình mp(R) chứa đường thẳng d và tạo với mp(P) một góc nhỏ nhất.
Giải
1. Phương trình tham số của d: \(\left\{ {\matrix{ {x = {\rm{ }} - 1{\rm{ }} + {\rm{ }}2t} \hfill \cr {y = {\rm{ }} - 1{\rm{ }} + t} \hfill \cr {z{\rm{ }} = {\rm{ }}3{\rm{ }} + t.} \hfill \cr } } \right.\)
Toạ độ giao điểm A của đường thẳng d với mp(P) thoả mãn hệ :
\(\left\{ {\matrix{ {x = - 1{\rm{ }} + {\rm{ }}2t} \hfill \cr {y{\rm{ }} = - 1{\rm{ }} + t} \hfill \cr {\;z = {\rm{ }}3{\rm{ }} + t} \hfill \cr {x{\rm{ }} + 2y - z + {\rm{ }}5{\rm{ }} = {\rm{ }}0} \hfill \cr } } \right. \)
\(\Rightarrow t = {1 \over 3} \Rightarrow A = \left( { - {1 \over 3}; - {2 \over 3};{{10} \over 3}} \right).\)
2. Gọi \(\alpha \) là góc giữa đường thẳng d và mp(P). d có vectơ chỉ phương \(\overrightarrow {{u_d}} (2;1;1),\) (P) có vectơ pháp tuyến \(\overrightarrow {{n_p}} (1;{\rm{ }}2;{\rm{ }} - {\rm{ }}1)\) nên
\(\sin \alpha = {{\left| {\overrightarrow {{u_d}} .\overrightarrow {{n_P}} } \right|} \over {\left| {\overrightarrow {{u_d}} } \right|.\left| {\overrightarrow {{n_P}} } \right|}} = {{\left| {2 + 2 - 1} \right|} \over {\sqrt {{2^2} + {1^2} + {1^2}} .\sqrt {{1^2} + {2^2} + {{\left( { - 1} \right)}^2}} }}={1 \over 2}\)
\(\Rightarrow \alpha = {30^ \circ }.\)
3. Vì (Q) là mặt phẳng chứa d và vuông góc với mp(P) nên mp(Q) chứa điểm \(\left( { - 1{\rm{ }};{\rm{ }} - 1{\rm{ }};{\rm{ }}3} \right) \in d\) và có vectơ pháp tuyến là
\(\left[ {\overrightarrow {{n_d}} ,\overrightarrow {{n_P}} } \right] = {\rm{ }}\left( { - 3{\rm{ }};{\rm{ }}3{\rm{ }};{\rm{ }}3} \right)\)
Suy ra phương trình mp(Q) là: \(x - y - z + {\rm{ }}3{\rm{ }} = {\rm{ }}0.\)
4. d' chính là đường thẳng giao tuyến của hai mặt phẳng (P) và (Q). Vì vậy, điểm \((x{\rm{ }};{\rm{ }}y;{\rm{ }}z) \in d'\) khi và chỉ khi \(\left( {x;y;z} \right)\) thoả mãn hệ
\(\left\{ {\matrix{ {x{\rm{ }} + {\rm{ }}2y{\rm{ }} - {\rm{ }}z{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}0} \hfill \cr {x - y - z + {\rm{ }}3{\rm{ }} = {\rm{ }}0,} \hfill \cr } } \right.\)
hay d' có phương trình tham số là :
\(\left\{ \matrix{ x = - {{11} \over 3} + t \hfill \cr y = - {2 \over 3} \hfill \cr z = t. \hfill \cr} \right.\)
5. Gọi \(\Delta \) là đường thẳng nằm trong mpc(P), đi qua điểm \(A\left( { - {1 \over 3}; - {2 \over 3};{{10} \over 3}} \right)\) và vuông góc với đường thẳng d. Khi đó, \(\Delta \) có vectơ chỉ phương \(\overrightarrow u = {1 \over 3}\left[ {\overrightarrow {{u_d}} .\overrightarrow {{n_P}} } \right] = \left( { - 1{\rm{ }};{\rm{ }}1{\rm{ }};{\rm{ }}1} \right)\) nên \(\Delta \) có phương trình chính tắc là
\({{x + {1 \over 3}} \over { - 1}} = y + {2 \over 3} = z - {{10} \over 3}.\)
6. Vì \(I \in d\) nên \(I = {\rm{ }}\left( { - 1 + 2t; - 1{\rm{ }} + {\rm{ }}t;3 + {\rm{ }}t} \right).\)
Mặt cầu tâm I tiếp xúc với mp(P) và có bán kính \(R{\rm{ }} = \sqrt 6 \). Và khi và chỉ khi \(d\left( {I,\left( P \right)} \right){\rm{ }} = {\rm{ }}\sqrt 6 \) hay
\({{\left| { - 1{\rm{ }} + 2t{\rm{ }} - 2{\rm{ }} + 2t{\rm{ }} - 3{\rm{ }} - t{\rm{ }} + 5} \right|} \over {\sqrt {{1^2} + {\rm{ }}{2^2} + {{\left( { - 1} \right)}^2}} }} = \sqrt 6 \)
\( < = > \left| {3t - 1} \right|{\rm{ }} = {\rm{ }}6 \Rightarrow \left[ \matrix{ 3t - 1 = 6 \hfill \cr 3t - 1 = - 6 \hfill \cr} \right. \Rightarrow \left[ \matrix{ t = {7 \over 3} \hfill \cr t = - {5 \over 3} \hfill \cr} \right. \)
\(\Rightarrow \left[ \matrix{ I = \left( {{{11} \over 3};{4 \over 3};{{16} \over 3}} \right) \hfill \cr I = \left( { - {{13} \over 3};{{ - 8} \over 3};{4 \over 3}} \right). \hfill \cr} \right.\)
Vậy có hai mặt cầu thoả mản yêu cầu đặt ra là:
\( \left( {{S_1}} \right):{\left( {x - {{11} \over 3}} \right)^2} + {\left( {x - {4 \over 3}} \right)^2} + {\left( {x - {{16} \over 3}} \right)^2} = 6, \)
\(\left( {{S_2}} \right):{\left( {x + {{13} \over 3}} \right)^2} + {\left( {x + {8 \over 3}} \right)^2} + {\left( {x - {4 \over 3}} \right)^2} = 6. \)
7. Cách 1. Ta tìm hai điểm phân biệt thuộc đường thẳng d.
Cho t = 0, ta được \(M( - 1;{\rm{ }} - 1{\rm{ }};{\rm{ }}3) \in d,{\rm{ }}t = {\rm{ }}1,\) ta được \(N\left( {{\rm{ }}1{\rm{ }};{\rm{ }}0{\rm{ }};{\rm{ }}4} \right) \in d.\)
Giả sử mặt phẳng (R) cần tìm có phương trình Ax + By + Cz + D = 0 với \({A^2} + {B^2} + {C^2} \ne 0.\)
Vì M, N \( \in \) mp(R)
\(\left\{ \matrix{ - A - B + 3C + D = 0 \hfill \cr A + 4C + D = 0 \hfill \cr} \right. \Rightarrow \left\{ \matrix{ C = - (2A + B) \hfill \cr D = {\rm{ }}7A{\rm{ }} + {\rm{ }}4B. \hfill \cr} \right.\)
Do đó \(\overrightarrow {{n_R}} = {\rm{ }}\left( {A{\rm{ }};{\rm{ }}B; - 2A - {\rm{ }}B} \right).\)
Ta có \(\overrightarrow {{n_P}} = {\rm{ }}\left( {1{\rm{ }};2; - 1} \right).\)
Gọi \(\varphi \) góc giữa hai mặt phẳng (R) và (P) \((0^\circ \le \varphi \le 90^\circ )\) thì:
\(\cos \varphi = {{\left| {A + 2B + 2A + B} \right|} \over {\sqrt 6 \sqrt {{A^2} + {B^2} + {{\left( {2A + B} \right)}^2}} }} = {3 \over {\sqrt 6 }}{{\left| {A + B} \right|} \over {\sqrt {5{A^2} + 2{B^2} + 4AB} }}.\)
Trường hợp A + B = 0, ta có \(\varphi \) = 90° là góc lớn nhất trong các góc có thể có giữa hai mặt phẳng (P) và (R), loại.
Trường hợp \(A + B \ne 0\), ta có
\(\cos \varphi = {3 \over {\sqrt 6 }}\sqrt {{{{{\left( {A + B} \right)}^2}} \over {2{{\left( {A + B} \right)}^2} + 3{A^2}}}} \)
\(= {3 \over {\sqrt 6 }}\sqrt {{1 \over {2 + 3{{\left( {{A \over {A + B}}} \right)}^2}}}} \le {3 \over {\sqrt 6 }}.\sqrt {{1 \over 2}} = {{\sqrt 3 } \over 2},\)
suy ra \(\varphi \ge 30^\circ .\)
Dấu = xảy ra khi A = 0. Khi đó B \( \ne \) 0 (vì nếu B = 0 thì C = 0, vô lí).
Ta chọn B = 1 thì \(C = - (2A + B) = - 1,D{\rm{ }} = {\rm{ }}7A{\rm{ }} + {\rm{ }}4B{\rm{ }} = {\rm{ }}4{\rm{ }}.\)
Vậy mp(R) chứa đường thẳng d và tạo với mp(P) một góc nhỏ nhất (bằng 30°) có phương trình là :
\(y{\rm{ }} - {\rm{ }}z{\rm{ }} + 4{\rm{ }} = {\rm{ }}0.\)
Cách 2. (h. 117)
Xét mặt phẳng (Q) thay đổi đi qua đường thẳng d, cắt mp(P) theo giao tuyến \(\Delta '.\) Vì \(A{\rm{ }} = {\rm{ }}d{\rm{ }} \cap {\rm{ }}\left( P \right)\) nên \(A{\rm{ }} \in \Delta '\).
Lấy một điểm K cố định trên d (K\( \ne \)A). Gọi H là hình chiếu của K trên mp(P), I là hình chiếu của H trên \(\Delta \)' thì HI và KI cùng vuông góc với \(\Delta \)'
nên là góc giữa mp(P) và mp(Q).
Ta có tan mà KH không đổi khi (Q) thay đổi và \(HI \le HA\) nên
nhỏ nhất <=> tan nhỏ nhất <=> HI lớn nhất <=> I trùng A hay \(\Delta ' \bot d\) tại A, tức là \(\Delta \)' trùng \(\Delta \) (\(\Delta \) nói ở câu 5).
Vậy mp(R) chứa đường thẳng d và tạo với mp(P) một góc nhỏ nhất khi và chỉ khi mp(R) chứa d và \(\Delta \) (\(\Delta \) nằm trên (P), đi qua A và vuông góc với d.
Ta có \(\left[ {\overrightarrow {{u_d}} ,\overrightarrow {{u_\Delta }} } \right] = \left( {0; - {\rm{ }}3;3} \right)\) nên (R) có vectơ pháp tuyến là \(\left( {0{\rm{ }};{\rm{ }}1{\rm{ }};{\rm{ }} - 1} \right).\)
Vì mp(R) đi qua \(A\left( { - {1 \over 3}; - {2 \over 3};{{10} \over 3}} \right)\) nên có phưomg trình là
\(y + {2 \over 3} - \left( {z - {{10} \over 3}} \right) = 0\) hay \(y{\rm{ }} - {\rm{ }}z{\rm{ }} - {\rm{ }}4{\rm{ }} = {\rm{ }}0.\)
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Ôn tập cuối năm Hình học
Bài tập & Lời giải:
- 👉 Bài 1 trang 223 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 2 trang 223 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 3 trang 223 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 4 trang 223 Sách bài tập Hình học lớp 12 Nâng cao.
- 👉 Bài 5 trang 223 Sách bài tập Hình học lớp 12 Nâng cao.
- 👉 Bài 6 trang 223 Sách bài tập Hình học lớp 12 Nâng cao.
- 👉 Bài 7 trang 224 Sách bài tập Hình học lớp 12 Nâng cao.
- 👉 Bài 8 trang 224 Sách bài tập Hình học lớp 12 Nâng cao.
- 👉 Bài 9 trang 224 Sách bài tập Hình học lớp 12 Nâng cao.
- 👉 Bài 10 trang 224 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 11 trang 224 Sách bài tập Hình học lớp 12 Nâng cao.
- 👉 Bài 12 trang 225 Sách bài tập Hình học lớp 12 Nâng cao.
- 👉 Bài 13 trang 225 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 15 trang 226 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 16 trang 226 Sách bài tập Hình học lớp 12 Nâng cao
- 👉 Bài 17 trang 226 Sách bài tập Hình học lớp 12 Nâng cao
Xem thêm lời giải SBT Toán 12 Nâng cao
PHẦN SBT GIẢI TÍCH 12 NÂNG CAO
- 👉 CHƯƠNG I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ
- 👉 CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
- 👉 CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG
- 👉 CHƯƠNG IV: SỐ PHỨC
PHẦN SBT HÌNH HỌC 12 NÂNG CAO
- 👉 CHƯƠNG I: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG
- 👉 CHƯƠNG II: MẶT CẦU, MẶT TRỤ, MẶT NÓN
- 👉 CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
- 👉 Ôn tập cuối năm Hình học
CHƯƠNG I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ
- 👉 Bài 1. Tính đơn điệu của hàm số
- 👉 Bài 2. Cực trị của hàm số - SBT Toán 12 Nâng cao
- 👉 Bài 3. Giá trị lớn nhất và nhỏ nhất của hàm số
- 👉 Bài 4. Đồ thị của hàm số và phép tịnh tiến hệ tọa độ
- 👉 Bài 5. Đường tiệm cận của hàm số
- 👉 Bài 6. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm đa thức
- 👉 Bài 7. Khảo sát sự biến thiên và vẽ đồ thị của một số hàm phân thức hữu tỉ
- 👉 Bài 8. Một số bài toán thường gặp về đồ thị
- 👉 Ôn tập chương 1 - Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
- 👉 Bài 1. Lũy thừa với số mũ hữu tỉ
- 👉 Bài 2. Lũy thừa với số mũ thực
- 👉 Bài 3, 4. Lôgarit, lôgarit thập phân và lôgarit tự nhiên
- 👉 Bài 5, 6. Hàm số mũ , hàm số lôgarit và hàm số lũy thừa
- 👉 Bài 7. Phương trình mũ và lôgarit
- 👉 Bài 8. Phương trình mũ và lôgarit
- 👉 Bài 9. Bất phương trình mũ và lôgarit
- 👉 Ôn tập chương II - Hàm số lũy thừa, hàm số mũ và hàm số lôgarit
CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG
- 👉 Bài 1. Nguyên hàm
- 👉 Bài 2. Một số phương pháp tìm nguyên hàm
- 👉 Bài 4. Một số phương pháp tính tích phân
- 👉 Bài 5, 6. Một số ứng dụng hình học của tích phân
- 👉 Ôn tập chương III - Nguyên hàm, tích phân và ứng dụng
CHƯƠNG IV: SỐ PHỨC
- 👉 Bài 1. Số phức
- 👉 Bài 2. Căn bậc hai của số phức, phương trình bậc hai
- 👉 Bài 3. Dạng lượng giác của số phức. Ứng dụng
- 👉 Ôn tập chương IV - Số phức
- 👉 Ôn tập cuối năm Giải tích
CHƯƠNG I: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG
- 👉 Bài 1. Khái niệm về khối đa diện - SBT Toán 12 Nâng cao
- 👉 Bài 2. Phép đối xứng qua mặt phẳng và sự bằng nhau của các khối đa diện
- 👉 Bài 3. Phép vị tự và sự đồng dạng của các khối đa diện
- 👉 Bài 4. Thể tích của khối đa diện
- 👉 Ôn tập chương I - Khối đa diện và thể tích của chúng
CHƯƠNG II: MẶT CẦU, MẶT TRỤ, MẶT NÓN
- 👉 Bài 1. Mặt cầu, khối cầu
- 👉 Bài 2, 3 : Khái niệm về mặt tròn xoay. Mặt trụ, hình trụ và khối trụ
- 👉 Bài 4. Mặt nón, hình nón và khối nón
- 👉 Ôn tập chương II - Mặt cầu, mặt trụ, mặt nón
CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN
Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc
Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Toán Học
- Đề thi, đề kiểm tra Toán lớp 12
- SBT Toán lớp 12 Nâng cao
- SBT Toán 12 Nâng cao
- SGK Toán 12 Nâng cao
- SBT Toán lớp 12
- SGK Toán lớp 12
Vật Lý
- SBT Vật lí 12 Nâng cao
- SGK Vật lí lớp 12 Nâng cao
- SBT Vật lí lớp 12
- SGK Vật lí lớp 12
- Giải môn Vật lí lớp 12
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 12
- SBT Hóa học 12 Nâng cao
- SGK Hóa học lớp 12 Nâng cao
- SBT Hóa lớp 12
- SGK Hóa lớp 12
Ngữ Văn
- Đề thi, đề kiểm tra Ngữ Văn 12 mới
- Soạn văn 12
- SBT Ngữ văn lớp 12
- Luyện dạng đọc hiểu
- Văn mẫu 12
- Soạn văn 12 chi tiết
- Soạn văn ngắn gọn lớp 12
- Soạn văn 12 siêu ngắn
- Bài soạn văn lớp 12 siêu ngắn
- Bài soạn văn 12
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 12
- SGK Sinh lớp 12 Nâng cao
- SBT Sinh lớp 12
- SGK Sinh lớp 12
- Giải môn Sinh học lớp 12
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 12 mới
- SBT Tiếng Anh lớp 12
- Ngữ pháp Tiếng Anh
- SGK Tiếng Anh 12
- SBT Tiếng Anh lớp 12 mới
- SGK Tiếng Anh 12 Mới