Bài 4 trang 223 Sách bài tập Hình học lớp 12 Nâng cao.

Cho tam giác cân ABC, AB = AC.

Bài làm:

Cho tam giác cân ABC, AB = AC. Một điểm M thay đổi trên đường thẳng vuông góc với mặt phẳng (ABC) tại A (M không trùng với điểm A).

a) Tìm quỹ tích trọng tâm G và trực tâm H của tam giác MBC.

b) Gọi O là trực tâm của tam giác ABC, hãy xác định vị trí của điểm M để thể tích khối tứ diện OHBC đạt giá trị lớn nhất.

Giải

a)

 

 Nếu gọi E là trung điểm của BC (h.l08a) thì trọng tâm G của tam giác MBC xác định bởi \(\overrightarrow {EG}  = {1 \over 3}\overrightarrow {EM} .\) Từ đó, khi M vạch đường thẳng \(\Delta \) vuông góc với mp(ABC) tại A \(\left( {M \ne \;A} \right)\) thì G vạch đường thẳng \(\Delta \)' vuông góc với mp(ABC) tại trọng tâm D của tam giác ABC (trừ điểm D).

Do AB = AC nên các tam giác vuông MAB, MAC bằng nhau, vậy MEAE cùng vuông góc với BC. Từ đó trực tâm H của tam giác MBC thuộc ME (h.l08b)

Trong mặt phẳng (AME), đường thẳng vuông góc với ME tại trực tâm H của tam giác MBC cắt AE tại O thì do BC \( \bot \) (AEM) nên BC \( \bot \) OH, từ đó OH \( \bot \) (MBC).

Ta có BM \( \bot \) CHBM \( \bot \) OH nên BM  \( \bot \) (OHC), do đó OC \( \bot \) BM, nhưng OC \( \bot \) AM nên OC \( \bot \) (ABM). Vậy OC \( \bot \)AB.

Điểm O thuộc đường cao OC và đường cao AE của tam giác ABC nên O là trực tâm của tam giác ABC.

Như vậy, khi \(M{\rm{ }} \in {\rm{ }}\Delta{\rm{ }}(M \ne A)\) thì H là trực tâm của tam giác MBC khi và chỉ khi H là hình chiếu của trực tâm O của tam giác ABC trên ME.

Vậy quỹ tích của H là đường tròn đường kính OE (bỏ hai điểm O, E) trong mặt phẳng trung trực của BC.

b) (h.108b).

 

\({V_{OHBC}} = 2{V_{OHBE}} = {2 \over 3}{S_{OHE}}.BE\)  (vì (OHE) là mặt phăng trung trực của BC) nên VOHBC lớn nhất khi và chỉ khi SOHE lớn nhất.

Tam giác vuông OHE có cạnh huyền OE cố định nên có diện tích lớn nhất khi và chỉ khi tam giác đó vuông cân, tức HEO = 45° hay AM = AE.

Vậy có hai vị trí của M trên \(\Delta \) để VOHBC đạt cực đại, đó là các điểm M sao cho AM = AE

Xemloigiai.com

Xem thêm lời giải SBT Toán 12 Nâng cao

Lời giải chi tiết, đáp án bài tập SBT Giải tích, Hình học 12 Nâng cao. Tất cả lý thuyết, bài tập vận dụng, thực hành Toán 12 Nâng cao

PHẦN SBT GIẢI TÍCH 12 NÂNG CAO

PHẦN SBT HÌNH HỌC 12 NÂNG CAO

CHƯƠNG I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

CHƯƠNG IV: SỐ PHỨC

CHƯƠNG I: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

CHƯƠNG II: MẶT CẦU, MẶT TRỤ, MẶT NÓN

CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.