Bài 3 trang 223 Sách bài tập Hình học lớp 12 Nâng cao

Xét hình lăng trụ tam giác đều với chiều cao h

Bài làm:

Xét hình lăng trụ tam giác đều với chiều cao h, nội tiếp một mặt cầu bán kính R (h < 2R) (tức sáu đỉnh của hình lăng trụ nằm trên mặt cầu đó).

a) Tính cạnh đáy của hình lăng trụ.

b) Tính thể tích của khối lăng trụ.

c) Tính h theo R để mỗi mặt bên của hình lăng trụ là hình vuông.

Giải

(h.107).

 

a) Gọi O là tâm của mặt cầu ngoại tiếp hình lăng trụ, I là hình chiếu của O trên mặt phẳng (ABC). Khi đó ta có : \(OA = OB = OC = R,OI = {1 \over 2}h.\) Tam giác OAI vuông tại I nên\(A{I^2} = O{A^2} - {\rm{ }}O{I^2} = {\rm{ }}{R^2}\; - {{{h^2}} \over 4}.\) 

IA là bán kính đường tròn ngoại tiếp tam giác đều ABC nên

              \(AB = IA\sqrt 3  = \sqrt {3\left( {{R^2} - {{{h^2}} \over 4}} \right)} .\)

Vậy cạnh đáy của hình lăng trụ bằng

                    \({1 \over 2}\sqrt {3\left( {4{R^2} - {h^2}} \right)} .\)

b) Thể tích của khối lăng trụ ABC.A'B'C' là :

\(V = {S_{ABC}}.h = {{A{B^2}\sqrt 3 } \over 4}h = {{3\sqrt 3 } \over {16}}\left( {4{R^2} - {h^2}} \right)h.\)

c) Mỗi mặt bên của hình lăng trụ là hình vuông khi và chỉ khi AB = h, tức \({1 \over 2}\sqrt {3\left( {4{R^2} - {h^2}} \right)}  = h \Leftrightarrow h = \sqrt {{{12} \over 7}} R\) (để ý rằng \(\sqrt {{{12} \over 7}} \)< 2).

Xemloigiai.com

Xem thêm lời giải SBT Toán 12 Nâng cao

Lời giải chi tiết, đáp án bài tập SBT Giải tích, Hình học 12 Nâng cao. Tất cả lý thuyết, bài tập vận dụng, thực hành Toán 12 Nâng cao

PHẦN SBT GIẢI TÍCH 12 NÂNG CAO

PHẦN SBT HÌNH HỌC 12 NÂNG CAO

CHƯƠNG I: ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

CHƯƠNG II: HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

CHƯƠNG III: NGUYÊN HÀM, PHÂN TÍCH VÀ ỨNG DỤNG

CHƯƠNG IV: SỐ PHỨC

CHƯƠNG I: KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

CHƯƠNG II: MẶT CẦU, MẶT TRỤ, MẶT NÓN

CHƯƠNG III: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.