Bài 1.77 trang 40 SBT giải tích 12
Bài làm:
Cho hàm số \(y = \dfrac{{(a - 1){x^3}}}{3} + a{x^2} + (3a - 2)x\).
LG a
Xác định \(a\) để hàm số luôn luôn đồng biến.
Phương pháp giải:
- Xét trường hợp \(a = 1\), kiểm tra xem hàm số có luôn đồng biến hay không.
- Trường hợp \(a \ne 1\), hàm số luôn đồng biến trên \(\mathbb{R}\) nếu \(y' \ge 0\) với mọi \(x \in \mathbb{R}\).
Lời giải chi tiết:
Ta có: \(y' = (a - 1){x^2} + 2ax + 3a - 2\).
+) Với \(a = 1,y' = 2x + 1\;\) đổi dấu khi \(x\) đi qua \( - \dfrac{1}{2}\).
Hàm số không luôn luôn đồng biến.
+) Với \(a \ne 1\) thì với mọi \(x\) mà tại đó \(y' \ge 0\)\( \Leftrightarrow \left\{ \begin{array}{l}a - 1 > 0\\\Delta ' \le 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}
a > 1\\
{a^2} - \left( {a - 1} \right)\left( {3a - 2} \right) \le 0
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
a > 1\\
{a^2} - 3{a^2} + 3a + 2a - 2 \le 0
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
a > 1\\
- 2{a^2} + 5a - 2 \le 0
\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a > 1\\\left[ \begin{array}{l}a \ge 2\\a \le \dfrac{1}{2}\end{array} \right.\end{array} \right.\) \( \Leftrightarrow a \ge 2\)
(khi \(a = 2\) thì \(y' = 0\;\) chỉ tại \(x = - 2\))
Vậy với \(a \ge 2\) hàm số luôn luôn đồng biến.
LG b
Xác định \(a\) để đồ thị của hàm số cắt trục hoành tại ba điểm phân biệt.
Phương pháp giải:
- Xét phương trình hoành độ giao điểm của đồ thị hàm số với đường thẳng \(y = 0\).
- Tìm điều kiện để phương trình đó có ba nghiệm phân biệt và kết luận.
Lời giải chi tiết:
Đồ thị cắt trục hoành tại ba điểm phân biệt khi và chỉ khi phương trình \(y = 0\) có ba nghiệm phân biệt. Ta có:
\(y = 0\)\(\Leftrightarrow \dfrac{{(a - 1){x^3}}}{3} + a{x^2} + (3a - 2)x=0\)
\( \Leftrightarrow x\left[ {\dfrac{{(a - 1){x^2}}}{3} + ax + 3a - 2} \right] = 0\)
\( \Leftrightarrow x\left[ {(a - 1){x^2} + 3ax + 9a - 6} \right] = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\\left( {a - 1} \right){x^2} + 3ax + 9a - 6 = 0\,\left( * \right)\end{array} \right.\)
\(y = 0\) có ba nghiệm phân biệt khi và chỉ khi phương trình \(\left( * \right)\) có hai nghiệm phân biệt khác \(0\).
\( \Leftrightarrow \left\{ \begin{array}{l}a - 1 \ne 0\\\Delta > 0\\9a-6 \ne 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a - 1 \ne 0\\9{a^2} - 4(a - 1)(9a - 6) > 0\\9a - 6 \ne 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}
a \ne 1\\
9{a^2} - 4\left( {9{a^2} - 15a + 6} \right) > 0\\
9a \ne 6
\end{array} \right. \) \(\Leftrightarrow \left\{ \begin{array}{l}
a \ne 1\\
- 27{a^2} + 60a - 24 > 0\\
a \ne \frac{2}{3}
\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a \ne 1\\\dfrac{{10 - 2\sqrt 7 }}{9} < a < \dfrac{{10 + 2\sqrt 7 }}{9}\\a \ne \dfrac{2}{3}\end{array} \right.\)
Vậy \(a \in \left( {\dfrac{{10 - 2\sqrt 7 }}{9};\dfrac{{10 + 2\sqrt 7 }}{9}} \right)\backslash \left\{ {1;\dfrac{2}{3}} \right\}\).
LG c
Khảo sát sự biến thiên và vẽ đồ thị \(\left( C \right)\) của hàm số ứng với \(a = \dfrac{3}{2}\).
Từ đó suy ra đồ thị của hàm số: \(y = \left| {\dfrac{{{x^3}}}{6} + \dfrac{{3{x^2}}}{2} + \dfrac{{5x}}{2}} \right|\)
Phương pháp giải:
- Thay \(a = \dfrac{3}{2}\) vào được hàm số cần khảo sát.
- Khảo sát tóm tắt:
+ Tìm TXĐ.
+ Xét chiều biến thiên.
+ Vẽ đồ thị.
- Dựng đồ thị hàm số \(y = \left| {f\left( x \right)} \right|\) từ đồ thị hàm số \(y = f\left( x \right)\):
+ Giữ nguyên phần đồ thị phía trên trục hoành.
+ Lấy đối xứng phần dưới qua trục hoành và xóa phần dưới cũ đi.
Lời giải chi tiết:
Khi \(a = \dfrac{3}{2}\) thì \(y = \dfrac{{{x^3}}}{6} + \dfrac{{3{x^2}}}{2} + \dfrac{{5x}}{2}\)
Ta có: \(y' = \dfrac{{{x^2}}}{2} + 3x + \dfrac{5}{2}\);\(y' = 0 \Leftrightarrow {x^2} + 6x + 5 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = - 5\end{array} \right.\)
Bảng biến thiên:
Đồ thị:
Ta có:
\(y =\left| {\dfrac{{{x^3}}}{6} + \dfrac{{3{x^2}}}{2} + \dfrac{{5x}}{2}} \right|\) \(= \left\{ \begin{array}{l}
\frac{{{x^3}}}{6} + \frac{{3{x^2}}}{2} + \frac{{5x}}{2}\,neu\,\frac{{{x^3}}}{6} + \frac{{3{x^2}}}{2} + \frac{{5x}}{2} \ge 0\\
- \left( {\frac{{{x^3}}}{6} + \frac{{3{x^2}}}{2} + \frac{{5x}}{2}} \right)\,neu\,\frac{{{x^3}}}{6} + \frac{{3{x^2}}}{2} + \frac{{5x}}{2} < 0
\end{array} \right.\)
Từ đồ thị hàm số \(y = \dfrac{{{x^3}}}{6} + \dfrac{{3{x^2}}}{2} + \dfrac{{5x}}{2}\) ta suy ra ngay đồ thị hàm số \(y = \left| {\dfrac{{{x^3}}}{6} + \dfrac{{3{x^2}}}{2} + \dfrac{{5x}}{2}} \right|\) như sau:
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Ôn tập chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài tập & Lời giải:
- 👉 Bài 1.75 trang 39 SBT giải tích 12
- 👉 Bài 1.76 trang 40 SBT giải tích 12
- 👉 Bài 1.78 trang 40 SBT giải tích 12
- 👉 Bài 1.79 trang 40 SBT giải tích 12
- 👉 Bài 1.80 trang 40 SBT giải tích 12
- 👉 Bài 1.81 trang 41 SBT giải tích 12
- 👉 Bài 1.82 trang 41 SBT giải tích 12
- 👉 Bài 1.83 trang 41 SBT giải tích 12
- 👉 Bài 1.84 trang 41 SBT giải tích 12
- 👉 Bài 1.85 trang 41 SBT giải tích 12
- 👉 Bài 1.86 trang 41 SBT giải tích 12
- 👉 Bài 1.87 trang 41 SBT giải tích 12
- 👉 Bài 1.88 trang 42 SBT giải tích 12
- 👉 Bài 1.89 trang 42 SBT giải tích 12
- 👉 Bài 1.90 trang 42 SBT giải tích 12
- 👉 Bài 1.91 trang 42 SBT giải tích 12
- 👉 Bài 1.92 trang 42 SBT giải tích 12
- 👉 Bài 1.93 trang 42 SBT giải tích 12
- 👉 Bài 1.94 trang 42 SBT giải tích 12
- 👉 Bài 1.95 trang 43 SBT giải tích 12
- 👉 Bài 1.96 trang 43 SBT giải tích 12
Xem thêm lời giải SBT Toán lớp 12
Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc
Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Toán Học
- Đề thi, đề kiểm tra Toán lớp 12
- SBT Toán lớp 12 Nâng cao
- SBT Toán 12 Nâng cao
- SGK Toán 12 Nâng cao
- SBT Toán lớp 12
- SGK Toán lớp 12
Vật Lý
- SBT Vật lí 12 Nâng cao
- SGK Vật lí lớp 12 Nâng cao
- SBT Vật lí lớp 12
- SGK Vật lí lớp 12
- Giải môn Vật lí lớp 12
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 12
- SBT Hóa học 12 Nâng cao
- SGK Hóa học lớp 12 Nâng cao
- SBT Hóa lớp 12
- SGK Hóa lớp 12
Ngữ Văn
- Đề thi, đề kiểm tra Ngữ Văn 12 mới
- Soạn văn 12
- SBT Ngữ văn lớp 12
- Luyện dạng đọc hiểu
- Văn mẫu 12
- Soạn văn 12 chi tiết
- Soạn văn ngắn gọn lớp 12
- Soạn văn 12 siêu ngắn
- Bài soạn văn lớp 12 siêu ngắn
- Bài soạn văn 12
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 12
- SGK Sinh lớp 12 Nâng cao
- SBT Sinh lớp 12
- SGK Sinh lớp 12
- Giải môn Sinh học lớp 12
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 12 mới
- SBT Tiếng Anh lớp 12
- Ngữ pháp Tiếng Anh
- SGK Tiếng Anh 12
- SBT Tiếng Anh lớp 12 mới
- SGK Tiếng Anh 12 Mới