Bài 1.81 trang 41 SBT giải tích 12

Giải bài 1.81 trang 41 sách bài tập giải tích 12. Khảo sát sự biến thiên và vẽ đồ thị của hàm số...

Bài làm:

Cho hàm số \(y = \dfrac{{3(x + 1)}}{{x - 2}}\)

LG a

Khảo sát sự biến thiên và vẽ đồ thị \(\left( C \right)\) của hàm số.

Phương pháp giải:

Khảo sát tóm tắt:

- Tìm TXĐ.

- Xét sự biến thiên.

- Vẽ đồ thị.

Lời giải chi tiết:

TXĐ: \(D = \mathbb{R}\backslash \left\{ 2 \right\}\).

Có \(y' = \dfrac{{ - 9}}{{{{\left( {x - 2} \right)}^2}}} < 0,\forall x \ne 2\) nên hàm số nghịch biến trên các khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\) và không có cực trị.

TCĐ: \(x = 2\) và TCN \(y = 3\).

Bảng biến thiên:

Đồ thị:


LG b

Viết phương trình các đường thẳng đi qua \(O\left( {0;0} \right)\) và tiếp xúc với \(\left( C \right)\).

Phương pháp giải:

- Viết dạng phương trình tiếp tuyến tại điểm \({M_0}\left( {{x_0};{y_0}} \right)\) theo công thức \(y = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\).

- Cho tiếp tuyến đi qua điểm \(O\left( {0;0} \right)\) tìm \({x_0}\), từ đó suy ra \({y_0}\) và viết phương trình.

Lời giải chi tiết:

Ta có: \(y' = \dfrac{{ - 9}}{{{{\left( {x - 2} \right)}^2}}},\forall x \ne 2\)

Phương trình tiếp tuyến tại điểm \({M_0}\left( {{x_0};{y_0}} \right)\) là: \(y-{y_0} = y'\left( {{x_0}} \right)\left( {x-{x_0}} \right)\)

Trong đó \(y'({x_0}) = \dfrac{{ - 9}}{{{{({x_0} - 2)}^2}}}\).

Khi đó \(y =  - \dfrac{9}{{{{({x_0} - 2)}^2}}}(x - {x_0}) + \dfrac{{3({x_0} + 1)}}{{{x_0} - 2}} \)

Tiếp tuyến đi qua \(O\left( {0;0} \right)\) \( \Leftrightarrow \dfrac{{9{x_0}}}{{{{({x_0} - 2)}^2}}} + \dfrac{{3({x_0} + 1)}}{{{x_0} - 2}} = 0\)

\(\begin{array}{l}
\Leftrightarrow \frac{{9{x_0} + 3\left( {{x_0} + 1} \right)\left( {{x_0} - 2} \right)}}{{{{\left( {{x_0} - 2} \right)}^2}}} = 0\\
\Rightarrow 9{x_0} + 3\left( {{x_0} + 1} \right)\left( {{x_0} - 2} \right) = 0\\
\Leftrightarrow 9{x_0} + 3\left( {x_0^2 - {x_0} - 2} \right) = 0\\
\Leftrightarrow 9{x_0} + 3x_0^2 - 3{x_0} - 6 = 0\\
\Leftrightarrow 3x_0^2 + 6{x_0} - 6 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
{x_0} = - 1 - \sqrt 3 \Rightarrow {y_0} = \frac{{ - 3 + 3\sqrt 3 }}{2}\\
{x_0} = - 1 + \sqrt 3 \Rightarrow {y_0} = \frac{{ - 3 - 3\sqrt 3 }}{2}
\end{array} \right.
\end{array}\)

+) Tại \({M_1}\left( { - 1 + \sqrt 3 ;\frac{{ - 3 - 3\sqrt 3 }}{2}} \right)\) ta có phương trình tiếp tuyến: \(y =  - \dfrac{3}{2}\left( {2 + \sqrt 3 } \right)x\)

+) Tại \({M_1}\left( { - 1 - \sqrt 3 ;\frac{{ - 3 + 3\sqrt 3 }}{2}} \right)\) ta có phương trình tiếp tuyến: \(y =  - \dfrac{3}{2}(2 - \sqrt 3 )x\).

Chú ý:

Cách khác:

Phương trình đường thẳng đi qua gốc tọa độ \(O\) có dạng \(y = kx\).

Để xác định tọa độ tiếp điểm của hai đường: \(y = \dfrac{{3(x + 1)}}{{x - 2}}\) và \(y = kx\), ta giải hệ:

\(\left\{ \begin{array}{l}\dfrac{{3(x + 1)}}{{x - 2}} = kx\\ - \dfrac{9}{{{{(x - 2)}^2}}} = k\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{3(x + 1)}}{{x - 2}} + \dfrac{{9x}}{{{{(x - 2)}^2}}} = 0\\ - \dfrac{9}{{{{(x - 2)}^2}}} = k\end{array} \right.\)

Giải phương trình thứ nhất ta được: \(x =  - 1 \pm \sqrt 3 \)

Thay vào phương trình thứ hai ta có: \({k_1} =  - \dfrac{3}{2}(2 + \sqrt 3 );{k_2} =  - \dfrac{3}{2}(2 - \sqrt 3 )\)

Từ đó có hai phương trình tiếp tuyến là: \(y =  - \dfrac{3}{2}(2 + \sqrt 3 )x\) và \(y =  - \dfrac{3}{2}(2 - \sqrt 3 )x\)


LG c

Tìm tất cả các điểm trên \(\left( C \right)\) có tọa độ là các số nguyên.

Phương pháp giải:

- Viết lại hàm số về dạng \(y = 3 + \dfrac{9}{{x - 2}}\).

- Từ điều kiện \(x,y \in \mathbb{Z}\), tìm \(x\) suy ra \(y\) và kết luận.

Lời giải chi tiết:

Ta có: \(y = \frac{{3(x + 1)}}{{x - 2}}  = \frac{{3x + 3}}{{x - 2}} = \frac{{3x - 6 + 9}}{{x - 2}}\) \( = \frac{{3x - 6}}{{x - 2}} + \frac{9}{{x - 2}}= 3 + \frac{9}{{x - 2}}\)

Để \(M(x,y) \in (C)\) có tọa độ nguyên thì  \(\left\{ \begin{array}{l}x \in \mathbb{Z}\\\dfrac{9}{{x - 2}} \in \mathbb{Z}\end{array} \right.\)\( \Rightarrow \left( {x - 2} \right) \in U\left( 9 \right) = \left\{ { \pm 1; \pm 3; \pm 9} \right\}\)

\( \Rightarrow x \in \left\{ {1;3; - 1;5; - 7;11} \right\}\).

Do đó, ta có \(6\) điểm trên \(\left( C \right)\) có tọa độ nguyên là: \(\left( {1; - 6} \right),\left( {3;12} \right),\left( { - 1;0} \right),\) \(\left( {5;6} \right),\left( { - 7;2} \right),\left( {11;4} \right)\).

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.