Bài 1.93 trang 42 SBT giải tích 12

Giải bài 1.93 trang 42 sách bài tập giải tích 12. Tìm khẳng định đúng trong các khẳng định sau đây:...

Đề bài

Tìm khẳng định đúng trong các khẳng định sau đây:

A. Hàm số \(y = {x^3} - 5\) có hai cực trị.

B. Hàm số \(y = \dfrac{{{x^4}}}{4} + 3{x^2} - 5\) luôn đồng biến.

C. Tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{3x - 2}}{{5 - x}}\) là \(y =  - 3\).

D. Đồ thị hàm số \(y = \dfrac{{3{x^2} - 2x + 5}}{{{x^2} + x + 7}}\) có hai tiệm cận đứng.

Phương pháp giải - Xem chi tiết

Xét tính đúng sai của các đáp án, dựa và cách xét tính đơn điệu của hàm số, các tìm điểm cực trị của hàm số, cách tìm các đường TCĐ, TCN của đồ thị hàm số.

Lời giải chi tiết

Đáp án A: Xét hàm \(y = {x^3} - 5\) có \(y' = 3{x^2} \ge 0,\forall x \in \mathbb{R}\) nên hàm số đồng biến trên \(\mathbb{R}\) và không có cực trị.

A sai.

Đáp án B: Xét hàm \(y = \dfrac{{{x^4}}}{4} + 3{x^2} - 5\) là hàm đa thức bậc bốn trùng phương nên không thể xảy ra trường hợp luôn đồng biến.

B sai.

Đáp án C: Đồ thị hàm số \(y = \dfrac{{3x - 2}}{{5 - x}}\) có TCN \(y =  - 3\).

C đúng.

Đáp án D: Đồ thị hàm số \(y = \dfrac{{3{x^2} - 2x + 5}}{{{x^2} + x + 7}}\) không có TCĐ vì \({x^2} + x + 7 > 0,\forall x\).

D sai.

Chọn C.

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.