Bài 1.80 trang 40 SBT giải tích 12

Giải bài 1.80 trang 40 sách bài tập giải tích 12. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho...

Bài làm:

Cho hàm số: \(y = f\left( x \right) = {x^4}-2m{x^2} + {m^3}-{m^2}\)

LG a

Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi \(m = 1\).

Phương pháp giải:

- Thay \(m\) được hàm số cần khảo sát.

- Khảo sát tóm tắt:

+ Tìm TXĐ.

+ Xét sự biến thiên.

+ Vẽ đồ thị.

Lời giải chi tiết:

Với \(m = 1\) ta được hàm số \(y = {x^4} - 2{x^2}\).

TXĐ: \(D = \mathbb{R}\)

Giới hạn: \(\mathop {\lim }\limits_{x \to  \pm \infty } y =  + \infty \)

Chiều biến thiên:

Có \(y' = 4{x^3} - 4x = 4x({x^2} - 1)\); \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x =  - 1\\x = 0\\x = 1\end{array} \right.\)

Hàm số đồng biến trên các khoảng \(\left( { - 1;0} \right)\) và \(\left( {1; + \infty } \right)\)

Nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {0;1} \right)\).

Hàm số đạt cực đại tại \(x = 0\) và \({y_{CD}} = 0\)

Hàm số đạt cực tiểu tại \(x =  \pm 1\) và \({y_{CT}} =  - 1\).

Bảng biến thiên:

Đồ thị:

+) Điểm uốn: \(y'' = 12{x^2} - 4;\)

\(y'' = 0 \Leftrightarrow 12{x^2} - 4 = 0\) \( \Leftrightarrow {x^2} = \frac{1}{3} \Leftrightarrow x =  \pm \frac{1}{{\sqrt 3 }}\)

Đồ thị hàm số nhận các điểm \(\left( { \pm \frac{1}{{\sqrt 3 }}; - \frac{5}{9}} \right)\) làm điểm uốn.

+) Cắt trục Oy tại \(\left( {0;0} \right)\)

+) Cắt trục Ox tại các điểm \(\left( {0;0} \right),\left( { \pm \sqrt 2 ;0} \right)\)


LG b

Xác định \(m\) để đồ thị \(\left( {{C_m}} \right)\) của hàm số đã cho tiếp xúc với trục hoành tại hai điểm phân biệt.

Phương pháp giải:

Đồ thị hàm số tiếp xúc trục hoành tại hai điểm phân biệt nếu và chỉ nếu hàm số đã cho có hai điểm cực tiểu và \({y_{CT}} = 0\).

Lời giải chi tiết:

Để \(\left( {{C_m}} \right)\) tiếp xúc với trục hoành tại hai điểm phân biệt thì điều kiện cần và đủ là hàm số đã cho có hai điểm cực tiểu, \(1\) điểm cực đại và \({y_{CT}} = 0\).

Ta có: \(y' = 4{x^3} - 4mx = 4x\left( {{x^2} - m} \right)\); \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\{x^2} = m\end{array} \right.\).

Để hàm số có hai điểm cực tiểu, một điểm cực đại thì phương trình \({x^2} = m\) có hai nghiệm phân biệt khác \(0\)

+) Nếu m ≤ 0 thì x2 – m ≥ 0 với mọi x nên đồ thị không thể tiếp xúc với trục Ox tại hai điểm phân biệt.

+) Nếu m > 0 thì y’ = 0 khi x = 0; x = √m hoặc x = -√m.

Khi đó hàm số có hai điểm cực tiểu là \(x = \sqrt m \) và \(x =  - \sqrt m \);

\( \Rightarrow {y_{CT}} = f\left( { \pm \sqrt m } \right)\) \( = {m^2} - 2{m^2} + {m^3} - {m^2} = {m^3} - 2{m^2}\)

\({y_{CT}} = 0 \Leftrightarrow {m^3} - 2{m^2} = 0\) \( \Leftrightarrow \left[ \begin{array}{l}m = 0\left( {KTM} \right)\\m = 2\left( {TM} \right)\end{array} \right.\).

Vậy \(m = 2\) là giá trị cần tìm.

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.