Bài 1.94 trang 42 SBT giải tích 12
Đề bài
Tìm khẳng định sai trong các khẳng định sau đây:
A. Hàm số \(y = 4\cos x - 5{\sin ^2}x - 3\) là hàm số chẵn.
B. Đồ thị hàm số \(y = \dfrac{{3{x^2} - 2x + 5}}{{{x^2} + x - 7}}\) có hai tiệm cận đứng.
C. Hàm số \(y = \dfrac{{2x - 3}}{{3x + 4}}\) luôn luôn nghịch biến.
D. Hàm số \(f\left( x \right) = \left\{ \begin{array}{l} - 2x\,\,\text{với}\,\,x \ge 0\\\sin \dfrac{x}{3}\,\,\text{với}\,\,x < 0\end{array} \right.\) không có đạo hàm tại \(x = 0\).
Phương pháp giải - Xem chi tiết
Xét tính đúng sai của từng đáp án, sử dụng các kiến thức về hàm số chẵn, lẻ, tiệm cận của đồ thị hàm số, tính đơn điệu và sự tồn tại của đạo hàm đã học ở lớp 11.
Lời giải chi tiết
Đáp án A: Xét \(f\left( x \right) = 4\cos x - 5{\sin ^2}x - 3\)
TXĐ: \(D = \mathbb{R}\) là tập đối xứng.
Ta có: \(f\left( { - x} \right) = 4\cos \left( { - x} \right) - 5{\sin ^2}\left( { - x} \right) - 3\) \( = 4\cos x - 5{\sin ^2}x - 3 = f\left( x \right)\)
Do đó hàm số đã cho là hàm số chẵn.
A đúng.
Đáp án B: Đồ thị hàm số \(y = \dfrac{{3{x^2} - 2x + 5}}{{{x^2} + x - 7}}\) có hai đường TCĐ là \(x = \dfrac{{ - 1 + \sqrt {29} }}{2}\) và \(x = \dfrac{{ - 1 - \sqrt {29} }}{2}\).
B đúng.
Đáp án C: Hàm số \(y = \dfrac{{2x - 3}}{{3x + 4}}\) có \(y' = \dfrac{{17}}{{{{\left( {3x + 4} \right)}^2}}} > 0,\forall x \ne - \dfrac{4}{3}\) nên luôn đồng biến trên các khoảng \(\left( { - \infty ; - \dfrac{4}{3}} \right)\) và \(\left( { - \dfrac{4}{3}; + \infty } \right)\).
C sai.
Đáp án D: Dễ thấy hàm số liên tục tại \(x = 0\) nên ta kiểm tra \(\mathop {\lim }\limits_{x \to 0} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\) có tồn tại hay không.
Ta có: \(\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\)\( = \mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{ - 2x - 0}}{{x - 0}} = - 2\).
\(\mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\)\( = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{3} - 0}}{{x - 0}}\) \( = \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{\sin \dfrac{x}{3}}}{x}\)\( = \mathop {\lim }\limits_{x \to {0^ - }} \left( {\dfrac{{\sin \dfrac{x}{3}}}{{\dfrac{x}{3}}}.\dfrac{1}{3}} \right) = \dfrac{1}{3}\).
Do đó \(\mathop {\lim }\limits_{x \to {0^ + }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}} \ne \mathop {\lim }\limits_{x \to {0^ - }} \dfrac{{f\left( x \right) - f\left( 0 \right)}}{{x - 0}}\) nên không tồn tại đạo hàm của hàm số tại \(x = 0\).
D đúng.
Chọn C.
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Ôn tập chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
Bài tập & Lời giải:
- 👉 Bài 1.75 trang 39 SBT giải tích 12
- 👉 Bài 1.76 trang 40 SBT giải tích 12
- 👉 Bài 1.77 trang 40 SBT giải tích 12
- 👉 Bài 1.78 trang 40 SBT giải tích 12
- 👉 Bài 1.79 trang 40 SBT giải tích 12
- 👉 Bài 1.80 trang 40 SBT giải tích 12
- 👉 Bài 1.81 trang 41 SBT giải tích 12
- 👉 Bài 1.82 trang 41 SBT giải tích 12
- 👉 Bài 1.83 trang 41 SBT giải tích 12
- 👉 Bài 1.84 trang 41 SBT giải tích 12
- 👉 Bài 1.85 trang 41 SBT giải tích 12
- 👉 Bài 1.86 trang 41 SBT giải tích 12
- 👉 Bài 1.87 trang 41 SBT giải tích 12
- 👉 Bài 1.88 trang 42 SBT giải tích 12
- 👉 Bài 1.89 trang 42 SBT giải tích 12
- 👉 Bài 1.90 trang 42 SBT giải tích 12
- 👉 Bài 1.91 trang 42 SBT giải tích 12
- 👉 Bài 1.92 trang 42 SBT giải tích 12
- 👉 Bài 1.93 trang 42 SBT giải tích 12
- 👉 Bài 1.95 trang 43 SBT giải tích 12
- 👉 Bài 1.96 trang 43 SBT giải tích 12
Xem thêm lời giải SBT Toán lớp 12
Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc
Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Toán Học
- Đề thi, đề kiểm tra Toán lớp 12
- SBT Toán lớp 12 Nâng cao
- SBT Toán 12 Nâng cao
- SGK Toán 12 Nâng cao
- SBT Toán lớp 12
- SGK Toán lớp 12
Vật Lý
- SBT Vật lí 12 Nâng cao
- SGK Vật lí lớp 12 Nâng cao
- SBT Vật lí lớp 12
- SGK Vật lí lớp 12
- Giải môn Vật lí lớp 12
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 12
- SBT Hóa học 12 Nâng cao
- SGK Hóa học lớp 12 Nâng cao
- SBT Hóa lớp 12
- SGK Hóa lớp 12
Ngữ Văn
- Đề thi, đề kiểm tra Ngữ Văn 12 mới
- Soạn văn 12
- SBT Ngữ văn lớp 12
- Luyện dạng đọc hiểu
- Văn mẫu 12
- Soạn văn 12 chi tiết
- Soạn văn ngắn gọn lớp 12
- Soạn văn 12 siêu ngắn
- Bài soạn văn lớp 12 siêu ngắn
- Bài soạn văn 12
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 12
- SGK Sinh lớp 12 Nâng cao
- SBT Sinh lớp 12
- SGK Sinh lớp 12
- Giải môn Sinh học lớp 12
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 12 mới
- SBT Tiếng Anh lớp 12
- Ngữ pháp Tiếng Anh
- SGK Tiếng Anh 12
- SBT Tiếng Anh lớp 12 mới
- SGK Tiếng Anh 12 Mới