Bài 1.88 trang 42 SBT giải tích 12

Giải bài 1.88 trang 42 sách bài tập giải tích 12. Cho hàm số. Khẳng định nào sau đây là đúng?...

Đề bài

Cho hàm số \(y = \dfrac{{x - 2}}{{x + 3}}\). Khẳng định nào sau đây là đúng?

A. Hàm số đồng biến trên từng khoảng xác định.

B. Hàm số đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\).

C. Hàm số nghịch biến trên từng khoảng xác định.

D. Hàm số nghịch biến trên khoảng \(\left( { - \infty ; + \infty } \right)\).

Phương pháp giải - Xem chi tiết

Tính đạo hàm, xét dấu đạo hàm và nhận xét.

Lời giải chi tiết

TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 3} \right\}\).

Ta có: \(y' = \dfrac{{1.3 - 1.\left( { - 2} \right)}}{{{{\left( {x + 3} \right)}^2}}}\) \( = \dfrac{5}{{{{\left( {x + 3} \right)}^2}}} > 0,\forall x \ne  - 3\)

Do đó hàm số đồng biến trên các khoảng \(\left( { - \infty ; - 3} \right)\) và \(\left( { - 3; + \infty } \right)\) hay hàm số đồng biến trên từng khoảng xác định.

Chọn A.

Chú ý:

Không được kết luận hàm số đồng biến trên \(\mathbb{R}\) hay \(\left( { - \infty ; + \infty } \right)\) vì nếu chọn \({x_1} =  - 4,{x_2} = 2\) ta thấy \({x_1} < {x_2}\) nhưng \({y_1} = 6 > 0 = {y_2}\) nên rõ ràng hàm số không đồng biến trên \(\mathbb{R}\).

Xemloigiai.com

Xem thêm lời giải SBT Toán lớp 12

Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

Lớp 12 | Các môn học Lớp 12 | Giải bài tập, đề kiểm tra, đề thi Lớp 12 chọn lọc

Danh sách các môn học Lớp 12 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.