Đề kiểm tra 15 phút - Đề số 1 - Chương 1 - Hình học 11
Đề bài
Câu 1: Có bao nhiêu phép tịnh tiến biến một đường thẳng cho trước thành chính nó?
A.Không có B. Chỉ có một
C. Chỉ có hai D. Vô số
Câu 2: Tìm mệnh đề sai trong các mệnh đề sau:
A. Phép tịnh tiến bảo toàn khoảng cách giữa hai điểm bất kì.
B. Phép tịnh tiến biến ba điểm thẳng hàng thành ba điểm thẳng hàng.
C. Phép tịnh tiến biến tam giác thành tam giác bằng tam giác đã cho
D. Phép tịnh tiến biến đường thẳng thành đường thẳng song song với đường thẳng đã cho.
Câu 3: Cho phép tịnh tiến theo \(\vec v = \vec 0\), phép tịnh tiến \({T_{\vec v}}\) biến hai điểm phân biệt M và N thành hai điểm \(M'\) và \(N'\) . Khi đó:
A. Điểm M trùng với điểm N
B. Vectơ \(\overrightarrow {MN} \) là vectơ \(\vec 0\)
C. Vectơ \(\overrightarrow {MM'} = \overrightarrow {NN'} = \vec 0\)
D. \(\overrightarrow {MM'} = 0\)
Câu 4: Trong mặt phẳng Oxy cho điểm A(2;5). Phép tịnh tiến theo vectơ \(\vec v = (1;2)\) biến A thành điểm có tọa độ là:
A.(3;1) B. (1;6)
C. (3;7) D. (4;7)
Câu 5: Trong mặt phẳng Oxy cho điểm A(2;5). Hỏi A là ảnh của điểm nào trong các điểm sau qua phép tịnh tiến theo vectơ \(\vec v = (1;2)\)?
A.(3;1) B. (1;3)
C. (4;7) D. (2;4)
Câu 6: Trong mặt phẳng Oxy , cho phép biến hình \(f\) xác định như sau: Với mỗi M (x;y) ta có \(M' = f(M)\) sao cho \(M'(x';y')\) thỏa mãn \(x' = x + 2,y' = y - 3\).
A. \(f\) là phép tịnh tiến theo vectơ \(\vec v = (2;3)\)
B. \(f\) là phép tịnh tiến theo vectơ \(\vec v = ( - 2;3)\)
C. \(f\) là phép tịnh tiến theo vectơ \(\vec v = ( - 2; - 3)\)
D. \(f\) là phép tịnh tiến theo vectơ \(\vec v = (2; - 3)\)
Câu 7: Trong mặt phẳng Oxy cho 2 điểm A (1;6), B (-1;-4). Gọi C , D lần lượt là ảnh của A và B qua phép tịnh tiến theo vectơ \(\vec v = (1;5)\). Tìm khẳng định đúng trong các khẳng định sau:
A. ABCD là hình thang
B. ABCD là hình bình hành
C. ABDC là hình vuông
D. Bốn điểm A,B,C,D thẳng hàng
Câu 8: Trong mặt phẳng tọa độ Oxy, cho \(\vec v = (1; - 3)\) và đường thẳng d có phương trình \(2x - 3y + 5 = 0\). Viết phương trình đường thẳng \(d'\) là ảnh của d qua phép tịnh tiến \({T_{\vec v}}\).
A. \(d':2x - y - 6 = 0\)
B. \(d':x - y - 6 = 0\)
C. \(d':2x - y + 6 = 0\)
D. \(d':2x - 3y - 6 = 0\)
Câu 9: Trong mặt phẳng tọa độ Oxy, cho đường tròn (C ) có phương trình \({x^2} + {y^2} + 2x - 4y - 4 = 0\). Tìm ảnh của (C ) qua phép tịnh tiến theo vectơ \(\vec v = (2; - 3)\).
A. \({x^2} + {y^2} - x + 2y - 7 = 0\)
B. \({x^2} + {y^2} - x + y - 7 = 0\)
C. \({x^2} + {y^2} - 2x + 2y - 7 = 0\)
D. \({x^2} + {y^2} - x + y - 8 = 0\)
Câu 10: Trong mặt phẳng với hệ trục tọa độ Oxy, cho phép tịnh tiến theo \(\vec v = ( - 2; - 1)\), phép tịnh tiến theo \(\vec v\)biến parabol \((P):y = {x^2}\) thành parabol \((P')\). Khi đó phương trình của \((P')\) là:
A. \(y = {x^2} + 4x + 5\)
B. \(y = {x^2} + 4x - 5\)
C. \(y = {x^2} + 4x + 3\)
D. \(y = {x^2} - 4x + 5\)
Lời giải chi tiết
1D |
2D |
3C |
4C |
5B |
6D |
7D |
8D |
9C |
10C |
Câu 1: Phép tịnh tiến theo vectơ \(\vec v\), với \(\vec v\) là véc tơ chỉ phương của đường thẳng d biến một đường thẳng cho trước thành chính nó. Khi đó sẽ có vô số vectơ \(\vec v\) thỏa mãn.
Chọn D
Câu 2: Theo tính chất SGK, phép tịnh tiến biến đường thẳng thành đường thẳng song song hoặc trùng với nó.
Chọn D.
Câu 3: Theo định nghĩa phép tịnh tiến. Ta có \({T_{\vec 0}}(M) = M' \Leftrightarrow \overrightarrow {MM'} = \overrightarrow 0 \) và \({T_{\vec 0}}(N) = N' \Leftrightarrow \overrightarrow {NN'} = \overrightarrow 0 \)
Chọn C.
Câu 4: Gọi ảnh của điểm A qua \({T_{\overrightarrow v }}\) là \(A'(x';y')\).Ta có
\({T_{\vec v}}(A) = A' \Leftrightarrow \overrightarrow {AA'} = \vec v \)\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' - 2 = 1}\\{y' - 5 = 2}\end{array} \Leftrightarrow } \right.\left\{ {\begin{array}{*{20}{c}}{x' = 3}\\{y' = 7}\end{array}} \right.\)
Vậy \(A'(3;7)\)
Chọn C.
Câu 5:
Ta có: \({T_{\vec v}}(M) = A \Leftrightarrow \overrightarrow {MA} = \vec v\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{2 - {x_M} = 1}\\{5 - {y_M} = 2}\end{array} \Leftrightarrow } \right.\left\{ {\begin{array}{*{20}{c}}{{x_M} = 2 - 1 = 1}\\{{y_M} = 5 - 2 = 3}\end{array}} \right. \)\(\Rightarrow M\left( {1;3} \right)\)
Chọn B.
Câu 6:
Ta có \(\left\{ {\begin{array}{*{20}{c}}{x' = x + 2}\\{y' = y - 3}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' - x = 2}\\{y' - y = - 3}\end{array}} \right.} \right.\)\(\Leftrightarrow \overrightarrow {MM'} = (2; - 3)\)
Chọn D
Câu 7:
\(C = {T_{\vec v}}(A) \Leftrightarrow \overrightarrow {AC} = \overrightarrow v \)\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_C} - 1 = 1}\\{{y_C} - 6 = 5}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_C} = 2}\\{{y_C} = 11}\end{array}} \right. \)\(\Rightarrow C\left( {2;11} \right)\)
\(D = {T_{\vec v}}(B) \Leftrightarrow \overrightarrow {BD} = \overrightarrow v \)\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_D} + 1 = 1}\\{{y_D} + 4 = 5}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x_D} = 0}\\{{y_D} = 1}\end{array}} \right. \)\(\Rightarrow D\left( {0;1} \right)\)
\(\overrightarrow {{\rm{A}}B} = ( - 2; - 10),\overrightarrow {BC} = (3;15),\)\(\overrightarrow {CD} = ( - 2; - 10).\)
Xét cặp \(\overrightarrow {{\rm{A}}B} ,\overrightarrow {BC} \) ta có \(\dfrac{{ - 2}}{3} = \dfrac{{ - 10}}{{15}} \Rightarrow A,B,C\) thẳng hàng.
Xét cặp \(\overrightarrow {BC} ,\overrightarrow {CD} \) ta có \(\dfrac{3}{{ - 2}} = \dfrac{{15}}{{ - 10}} \Rightarrow B,C,D\) thẳng hàng.
Vậy A, B, C, D thẳng hàng.
Chọn D.
Câu 8:
Lấy điểm \(M ( x;y)\) tùy ý thuộc \(d\), ta có \(2x -3y +5 = 0\) (1)
Gọi \(M'(x';y') = {T_{\vec v}}(M) \Rightarrow M' \in d'\)
Do \({T_{\vec v}}(M) = M' \Leftrightarrow \overrightarrow {MM'} = \overrightarrow v \)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' = x + 1}\\{y' = y - 3}\end{array} \Leftrightarrow } \right.\left\{ {\begin{array}{*{20}{c}}{x = x' - 1}\\{y = y' + 3}\end{array}} \right.\)
Thay vào (1) ta được phương trình \(2(x' - 1) - 3(y' + 3) + 5 = 0 \)\(\Leftrightarrow 2x' - 3y' - 6 = 0\)
Mà \(M' \in d'\) nên phương trình đường thẳng của \(d'\) là \(2x - 3y - 6 = 0\)
Chọn D.
Câu 9:
Gọi \((C')\)là ảnh của \((C)\) qua phép tịnh tiến theo vectơ \(\overrightarrow v \)
Lấy điểm \(M (x;y)\) tùy ý thuộc đường tròn \((C)\) ta có: \({x^2} + {y^2} + 2x - 4y - 4 = 0\,\,\,\,\,(*)\)
Gọi \(M'(x';y') = {T_{\vec v}}(M) \Rightarrow M' \in (C')\)
Do \({T_{\vec v}}(M) = M' \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' = x + 2}\\{y' = y - 3}\end{array} \Leftrightarrow } \right.\left\{ {\begin{array}{*{20}{c}}{x = x' - 2}\\{y = y' + 3}\end{array}} \right.\)
Thay vào phương trình \(\,(*)\) ta được :
\(\begin{array}{l}{\left( {x' - 2} \right)^2} + {\left( {y' + 3} \right)^2} \\+ 2\left( {x' - 2} \right) - 4\left( {y' + 3} \right) - 4 = 0\\ \Leftrightarrow {{x'}^2} + {{y'}^2} - 2x' + 2y' - 7 = 0\end{array}\)
Mà \(M' \in (C')\)
Vậy phương trình đường tròn cần tìm là \((C'):{x^2} + {y^2} - 2x + 2y - 7 = 0\)
Chọn C.
Câu 10:
Lấy \(M (x;y)\) tùy ý trên \((P)\).
Gọi \(M'(x';y') = {T_{\vec v}}(M)\)
Vì \({T_{\vec v}}(P) = (P')\) nên \(M' \in (P')\)
Ta có: \({T_{\vec v}}(M) = M' \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' = x - 2}\\{y' = y - 1}\end{array}} \right.\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = x' + 2}\\{y = y' + 1}\end{array} \Rightarrow M\left( {x' + 2;y' + 1} \right)} \right.\)
Vì \(M\left( {x' + 2;y' + 1} \right) \in (P)\) nên \(y' + 1 = {\left( {x' + 2} \right)^2}\)\( \Leftrightarrow y' = {x'^2} + 4x' + 3\)
Mà \(M' \in (P')\)
Vậy phương trình của \((P'):y = {x^2} + 4x + 3\)
Chọn C.
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Đề kiểm tra 15 phút - Chương 1 - Hình học 11
Xem thêm lời giải Đề thi, đề kiểm tra Toán lớp 11
Dưới đây là danh sách Đề thi, đề kiểm tra Toán lớp 11 chọn lọc, có đáp án, cực sát đề chính thức theo nội dung sách giáo khoa Lớp 11.
Đề thi giữa kì 1 Toán 11
- 👉 Đề ôn tập giữa học kì 1 – Có đáp án và lời giải
- 👉 Đề thi giữa học kì 1 của các trường có lời giải – Mới nhất
Đề thi học kì 1 Toán 11
- 👉 Đề cương học kì I
- 👉 Đề thi học kì 1 mới nhất có lời giải
- 👉 Đề ôn tập học kì 1 – Có đáp án và lời giải
- 👉 Đề thi học kì 1 của các trường có lời giải – Mới nhất
Đề thi giữa kì 2 Toán 11
- 👉 Đề ôn tập giữa kì 2- Có đáp án và lời giải chi tiết
- 👉 Đề thi giữa học kì 2 của các trường có lời giải – Mới nhất
Đề thi học kì 2 Toán 11
Đề kiểm tra 15 phút Toán 11
- 👉 Đề kiểm tra 15 phút – Chương 1 – Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút – Chương 2 – Đại số và giải tích 11
- 👉 Đề kiểm tra 15 phút – Chương 3 – Đại số và giải tích 11
- 👉 Đề kiểm tra 15 phút - Chương 4 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút - Chương 5 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút - Chương 1 - Hình học 11
- 👉 Đề kiểm tra 15 phút - Chương 2 - Hình học 11
- 👉 Đề kiểm tra 15 phút - Chương 3 - Hình học 11
Đề kiểm tra 1 tiết Toán 11
- 👉 Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đại số và giải tích 11
- 👉 Đề kiểm tra 45 phút (1 tiết) – Chương 2 – Đại số và giải tích 11
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 45 phút (1 tiết ) - Chương 5 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 45 phút ( 1 tiết) - Chương 1 - Hình học 11
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 11
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 11
Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc
Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Toán Học
- Đề thi, đề kiểm tra Toán lớp 11
- SBT Toán lớp 11 Nâng cao
- SBT Toán 11 Nâng cao
- SGK Toán 11 Nâng cao
- SBT Toán lớp 11
- SGK Toán lớp 11
Vật Lý
- SBT Vật lí 11 Nâng cao
- SGK Vật lí lớp 11 Nâng cao
- SBT Vật lí lớp 11
- SGK Vật lí lớp 11
- Giải môn Vật lí lớp 11
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 11
- SBT Hóa học 11 Nâng cao
- SGK Hóa học lớp 11 Nâng cao
- SBT Hóa lớp 11
- SGK Hóa lớp 11
Ngữ Văn
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 11
- SGK Sinh lớp 11 Nâng cao
- SBT Sinh lớp 11
- SGK Sinh lớp 11
- Giải môn Sinh học lớp 11
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 11 mới
- SBT Tiếng Anh lớp 11
- SGK Tiếng Anh lớp 11
- SBT Tiếng Anh lớp 11 mới
- SGK Tiếng Anh lớp 11 Mới