Đề kiểm tra 15 phút - Đề số 5 - Chương 1 - Hình học 11
Đề bài
Câu 1: Trong các mệnh đề sau, mệnh đề nào sai?
A. Có duy nhất một phép vị tự biến mọi điểm thành chính nó
B. Có vô số phép vị tự biến mọi điểm thành chính nó
C. Thực hiện liên tiếp hai phép vị tự sẽ được một phép vị tự
D. Thực hiện liên tiếp hai phép vị tự tâm I sẽ được một phép vị tự tâm I.
Câu 2: Cho tam giác ABC, với G là trọng tâm tam giác , D là trung điểm của BC. Gọi V là phép vị tự tâm G biến điểm A thành điểm D. Khi đó V có tỷ số k là:
A. \(k = \dfrac{3}{2}\) B. \(k = - \dfrac{3}{2}\)
C. \(k = \dfrac{1}{2}\) D. \(k = - \dfrac{1}{2}\)
Câu 3: Phép vị tự tâm O tỉ số \(k(k \ne 0)\) biến mỗi điểm M thành \(M'\) sao cho:
A. \(\overrightarrow {OM} = \dfrac{1}{k}\overrightarrow {OM'} .\)
B. \(\overrightarrow {OM} = k\overrightarrow {OM'} .\)
C. \(\overrightarrow {OM} = - k\overrightarrow {OM'} .\)
D. \(\overrightarrow {OM} = - \overrightarrow {OM'} .\)
Câu 4: Chọn câu sai:
A. Qua phép vị tự có tỉ số \(k \ne 1\), đường thẳng đi qua tâm vị tự sẽ biến thành chính nó.
B. Qua phép vị tự có tỉ số \(k \ne 0\), đường tròn đi qua tâm vị tự sẽ biến thành chính nó.
C. Qua phép vị tự có tỉ số \(k \ne 1\), không có đường tròn nào biến thành chính nó.
D. Qua phép vị tự \({V_{(O;1)}}\) đường tròn tâm O sẽ biến thành chính nó.
Câu 5: Trong mặt phẳng Oxy cho điểm M (-2;4) . Phép vị tự tâm O tỉ số k = -2 biến điểm M thành điểm nào trong các điểm sau?
A.(-3;4) B. (-4;-8)
C. (4;-8) D. (4;8)
Câu 6: Trong mặt phẳng Oxy cho đường thẳng d có phương trình \(2x + y - 3 = 0\). Phép vị tự tâm O tỉ số k = 2 biến d thành đường thẳng nào trong các đường thẳng có phương trình sau?
A. \(2x + y + 3 = 0\)
B. \(2x + y - 6 = 0\)
C. \(4x + 2y - 3 = 0\)
D. \(4x + 2y - 5 = 0\)
Câu 7: Trong mặt phẳng Oxy cho đường tròn (C) có phương trình \({(x - 1)^2} + {(y - 2)^2} = 4\). Phép vị tự tâm O tỉ số k = -2 biến (C) thành đường tròn nào trong các đường tròn có phương trình sau ?
A. \({(x - 2)^2} + {(y - 4)^2} = 16\)
B. \({(x - 4)^2} + {(y - 2)^2} = 4\)
C. \({(x - 4)^2} + {(y - 2)^2} = 16\)
D. \({(x + 2)^2} + {(y + 4)^2} = 16\)
Câu 8: Trong mặt phẳng với hệ trục tọa độ Oxy. Cho phép vị tự tâm I (2;3) tỉ số k = -2 biến điểm M (-7;2) thành \(M'\) có tọa độ là:
A.(-10;2) B. (20;5)
C. (18;2) D. (-10;5)
Câu 9: Trong mặt phẳng Oxy cho điểm M (2;4). Phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số \(k = \dfrac{1}{2}\) và phép đối xứng qua trục Oy sẽ biến M thành điểm nào trong các điểm sau :
A.(1;2) B. (-2;4)
C. (-1;2) D. (1;-2)
Câu 10: Trong măt phẳng với hệ trục tọa độ Oxy cho A (1;2), B (-3;1). Phép vị tự tâm I (2;-1) tỉ số k = 2 biến điểm A thành \(A'\), phép đối xứng tâm B biến \(A'\) thành \(B'\). Tọa độ điểm \(B'\) là:
A.(0;5) B. (5;0)
C. (-6;-3) D. (-3;-6)
Lời giải chi tiết
1A |
2D |
3A |
4B |
5C |
6B |
7D |
8B |
9C |
10C |
Câu 1:
Phép đồng nhất là phép vị tự biến mọi điểm thành chính nó , nhưng có vô số phép đồng nhất với tâm vị tự bất kì nên đáp án A sai
Chọn A.
Câu 2:
Vì G là trọng tâm của tam giác ABC nên \(\overrightarrow {GD} = - \dfrac{1}{2}\overrightarrow {GA} \)
\( \Rightarrow {V_{\left( {G;\frac{{ - 1}}{2}} \right)}}(A) = D\)
Chọn D.
Câu 3:
\({V_{\left( {O;k} \right)}}(M) = M' \Leftrightarrow \overrightarrow {OM'} = k\overrightarrow {.OM} \)\(\Leftrightarrow \overrightarrow {OM} = \dfrac{1}{k}\overrightarrow {OM'} \,,(k \ne 0)\)
Chọn A.
Câu 4:
Qua phép vị tự tâm O tỉ số \(k = \pm 1\) đường tròn \(\left( {O;R} \right)\) biến thành chính nó
Chọn B.
Câu 5:
Gọi \(M'(x';y')\) là ảnh của M qua \({V_{\left( {O; - 2} \right)}}\)
Khi đó \(\left\{ {\begin{array}{*{20}{c}}{x' = kx}\\{y' = ky}\end{array}} \right. \)\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' = - 2.( - 2) = 4}\\{y' = - 2.4 = - 8}\end{array}} \right. \)\(\Rightarrow M'\left( {4; - 8} \right)\)
Chọn C
Câu 6:
Gọi \(d'\) là ảnh của d qua \({V_{\left( {O;2} \right)}}\)
Lấy \(M\left( {x;y} \right) \in d\) tùy ý \( \Rightarrow 2x + y - 3 = 0\)(1)
Gọi \(M'(x';y') = {V_{\left( {O;2} \right)}}(M) \Rightarrow M' \in d'\)
Vì \({V_{\left( {O;2} \right)}}\left( M \right) = M'\) nên \(\left\{ {\begin{array}{*{20}{c}}{x' = 2x}\\{y' = 2y}\end{array}} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{x'}}{2}\\y = \dfrac{{y'}}{2}\end{array} \right.\)
Thay vào (1) ta được : \(2.\dfrac{{x'}}{2} + \dfrac{{y'}}{2} - 3 = 0 \)\(\Leftrightarrow 2x' + y' - 6 = 0\)
Mà \(M' \in d'\) nên phương trình đường thẳng \(d'\) là : \(2x + y - 6 = 0\)
Chọn B.
Câu 7:
Gọi \(\left( {C'} \right) = {V_{\left( {O; - 2} \right)}}\left( C \right)\)
Lấy \(M\left( {x;y} \right) \in \left( C \right)\) tùy ý, ta có: \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 4\,\,(1)\)
Gọi \(M'(x';y') = {V_{\left( {O; - 2} \right)}}(M) \Rightarrow M' \in (C')\)
Vì \({V_{\left( {O; - 2} \right)}}\left( M \right) = M'\) nên \(\left\{ {\begin{array}{*{20}{c}}{x' = - 2x}\\{y' = - 2y}\end{array}} \right. \)\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = \dfrac{{ - 1}}{2}x'}\\{y = \dfrac{{ - 1}}{2}y'}\end{array}} \right.\)
Thay vào (1) ta được :
\(\begin{array}{l}{\left( {\dfrac{{ - 1}}{2}x' - 1} \right)^2} + {\left( {\dfrac{{ - 1}}{2}y' - 2} \right)^2} = 4 \\\Leftrightarrow \dfrac{{{{\left( { - x' - 2} \right)}^2}}}{4} + \dfrac{{{{\left( { - y' - 4} \right)}^2}}}{4} = 4\\ \Leftrightarrow {\left( {x' + 2} \right)^2} + {\left( {y' + 4} \right)^2} = 16\end{array}\)
Mà \(M' \in \left( {C'} \right)\) nên phương trình đường tròn \(\left( {C'} \right)\) là : \({\left( {x + 2} \right)^2} + {\left( {y + 4} \right)^2} = 16\)
Chọn D.
Câu 8:
Gọi \(M'(x';y')\)
Vì \({V_{\left( {I; - 2} \right)}}\left( M \right) = M'\) nên \(\left\{ {\begin{array}{*{20}{c}}{x' = kx + \left( {1 - k} \right)a}\\{y' = ky + \left( {1 - k} \right)b}\end{array}} \right. \)\(\Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' = - 2.( - 7) + \left( {1 + 2} \right).2 = 20}\\{y' = - 2.2 + \left( {1 + 2} \right).3 = 5}\end{array}} \right. \Rightarrow M'\left( {20;5} \right)\)
Chọn B.
Câu 9:
Gọi \(M'(x';y')\) là ảnh của M qua \({V_{\left( {O;\frac{1}{2}} \right)}}\)
Khi đó \(\left\{ {\begin{array}{*{20}{c}}{x' = kx}\\{y' = ky}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' = \dfrac{1}{2}.2 = 1}\\{y' = \dfrac{1}{2}.4 = 2}\end{array}} \right. \)\(\Rightarrow M'\left( {1;2} \right)\)
Gọi \(M''(x'';y'')\) là ảnh của \(M'\) qua ĐOy
Khi đó \(\left\{ {\begin{array}{*{20}{c}}{x'' = - x'}\\{y'' = y'}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x'' = - 1}\\{y'' = 2}\end{array}} \right. \)\(\Rightarrow M''\left( { - 1;2} \right)\)
Chọn C.
Câu 10:
Gọi \(A'(x';y')\).
Ta có \({V_{\left( {I;2} \right)}}\left( A \right) = A' \Leftrightarrow \overrightarrow {IA'} = 2\overrightarrow {IA}\)\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' = 0}\\{y' = 5}\end{array}} \right. \Rightarrow A'\left( {0;5} \right)\)
Gọi \(B'(x'';y'')\)
Vì ĐB \(\left( {A'} \right) = B'\)
nên \(\left\{ {\begin{array}{*{20}{c}}{x'' = 2.\left( { - 3} \right) - 0 = - 6}\\{y'' = 2.1 - 5 = - 3}\end{array}} \right. \)\(\Rightarrow B'\left( { - 6; - 3} \right)\)
Chọn C.
Xemloigiai.com
Xem thêm Bài tập & Lời giải
Trong bài: Đề kiểm tra 15 phút - Chương 1 - Hình học 11
Xem thêm lời giải Đề thi, đề kiểm tra Toán lớp 11
Dưới đây là danh sách Đề thi, đề kiểm tra Toán lớp 11 chọn lọc, có đáp án, cực sát đề chính thức theo nội dung sách giáo khoa Lớp 11.
Đề thi giữa kì 1 Toán 11
- 👉 Đề ôn tập giữa học kì 1 – Có đáp án và lời giải
- 👉 Đề thi giữa học kì 1 của các trường có lời giải – Mới nhất
Đề thi học kì 1 Toán 11
- 👉 Đề cương học kì I
- 👉 Đề thi học kì 1 mới nhất có lời giải
- 👉 Đề ôn tập học kì 1 – Có đáp án và lời giải
- 👉 Đề thi học kì 1 của các trường có lời giải – Mới nhất
Đề thi giữa kì 2 Toán 11
- 👉 Đề ôn tập giữa kì 2- Có đáp án và lời giải chi tiết
- 👉 Đề thi giữa học kì 2 của các trường có lời giải – Mới nhất
Đề thi học kì 2 Toán 11
Đề kiểm tra 15 phút Toán 11
- 👉 Đề kiểm tra 15 phút – Chương 1 – Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút – Chương 2 – Đại số và giải tích 11
- 👉 Đề kiểm tra 15 phút – Chương 3 – Đại số và giải tích 11
- 👉 Đề kiểm tra 15 phút - Chương 4 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút - Chương 5 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 15 phút - Chương 1 - Hình học 11
- 👉 Đề kiểm tra 15 phút - Chương 2 - Hình học 11
- 👉 Đề kiểm tra 15 phút - Chương 3 - Hình học 11
Đề kiểm tra 1 tiết Toán 11
- 👉 Đề kiểm tra 45 phút (1 tiết) – Chương 1 – Đại số và giải tích 11
- 👉 Đề kiểm tra 45 phút (1 tiết) – Chương 2 – Đại số và giải tích 11
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương 4 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 45 phút (1 tiết ) - Chương 5 - Đại số và Giải tích 11
- 👉 Đề kiểm tra 45 phút ( 1 tiết) - Chương 1 - Hình học 11
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương 2 - Hình học 11
- 👉 Đề kiểm tra 45 phút (1 tiết) - Chương 3 - Hình học 11
Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc
Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.
Toán Học
- Đề thi, đề kiểm tra Toán lớp 11
- SBT Toán lớp 11 Nâng cao
- SBT Toán 11 Nâng cao
- SGK Toán 11 Nâng cao
- SBT Toán lớp 11
- SGK Toán lớp 11
Vật Lý
- SBT Vật lí 11 Nâng cao
- SGK Vật lí lớp 11 Nâng cao
- SBT Vật lí lớp 11
- SGK Vật lí lớp 11
- Giải môn Vật lí lớp 11
Hóa Học
- Đề thi, đề kiểm tra Hóa lớp 11
- SBT Hóa học 11 Nâng cao
- SGK Hóa học lớp 11 Nâng cao
- SBT Hóa lớp 11
- SGK Hóa lớp 11
Ngữ Văn
Lịch Sử
Địa Lý
Sinh Học
- Đề thi, đề kiểm tra Sinh lớp 11
- SGK Sinh lớp 11 Nâng cao
- SBT Sinh lớp 11
- SGK Sinh lớp 11
- Giải môn Sinh học lớp 11
GDCD
Tin Học
Tiếng Anh
- Đề thi, đề kiểm tra Tiếng Anh 11 mới
- SBT Tiếng Anh lớp 11
- SGK Tiếng Anh lớp 11
- SBT Tiếng Anh lớp 11 mới
- SGK Tiếng Anh lớp 11 Mới