Đề kiểm tra 15 phút – Chương 2 – Đề số 5 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề thi kiểm tra 15 phút – Chương 2 – Đề số 5 – Đại số và giải tích 11

Đề bài

Câu 1: Một thí sinh phải chọn 10 trong số 20 câu hỏi. Hỏi có bao nhiêu cách chọn 10 câu hỏi này nếu 3 câu đầu phải được chọn:

A. \(C_{20}^{10}\)               B. \(C_7^{10} + C_{10}^3\)

C. \(C_{10}^7.C_{10}^3\)       D. \(C_{17}^7\)

Câu 2: Giá trị của \(n \in \mathbb{N}\) thỏa mãn đẳng thức \(C_n^6 + 3C_n^7 + 3C_n^8 + C_n^9 = 2C_{n + 2}^8\) là:

A. n = 18                     B. n = 16

C. n = 15                     D. n = 14

Câu 3: Trong các câu sau, câu nào sai:

A. \(C_{14}^3 = C_{14}^{11}\)                  

B. \(C_{10}^3 + C_{10}^4 = C_{11}^4\)

C. \(C_4^0 + C_4^1 + C_4^2 + C_4^3 + C_4^4 = 16\)

D. \(C_{10}^4 + C_{11}^4 = C_{11}^5\)

Câu 4: Nếu \(A_x^2 = 110\) thì

A. x =10

B. x = 11

C. x = 11 hay x = 10

D. x = 0

Câu 5: Trong mặt phẳng cho 2010 điểm phân biệt sao cho 3 điểm bất kỳ không thẳng hàng. Hỏi có bao nhiêu véc tơ khác véc tơ – không có điểm đầu và điểm cuối thuộc 2010 điểm đã cho.

A. 4039127                 B. 4038090

C. 4167114                 D. 167541284

Câu 6: Cho biết \(C_n^{n - k} = 28\). Giá trị của n và k lần lượt là:

A. 8 và 4

B. 8 và 3

C. 8 và 2

D. Không thể tìm được

Câu 7: Nếu một đa giác đều có 44 đường chéo, thì số cạnh của đa giác là:

A. 11                           B. 10

C. 9                             D. 8

Câu 8: Nghiệm của phương trình \(A_n^3 = 20n\) là :

A. n = 6                       B. n = 5

C. n = 8                       D. Không tồn tại

Câu 9: Cho đa giác đều n đỉnh, \(n \in \mathbb{N}\)và \(n \ge 3\). Tìm n biết rằng đa giác đã cho có 135 đường chéo

A. n = 15                     B. n = 27

C. n = 8                       D. n = 18

Câu 10: Giải bất phương trình ( ẩn n thuộc tập tự nhiên ) \(\dfrac{{C_{n + 1}^2}}{{C_n^2}} \ge \dfrac{3}{{10}}n\)

A. \(2 \le n < 4\)   

B. \(0 \le n \le 2\)

C. \(1 \le n \le 5\)

D. \( - {2 \over 3} \le n \le 5\)

Lời giải chi tiết

1D

2C

3D

4B

5B

6C

7A

8A

9D

10D

 

Câu 1:

Theo yêu cầu bài toán:

+ 3 câu đầu phải được chọn thì chỉ có 1 cách

+ Chọn 7 câu trong 17 câu còn lại có: \(C_{17}^7\) cách

Vậy có \(C_{17}^7\) cách.

Chọn đáp án D.

Câu 2:

Điều kiện: \(n \ge 9\)

Ta có: \(C_n^6 + 3C_n^7 + 3C_n^8 + C_n^9 = 2C_{n + 2}^8\)


Giải phương trình này có: \(n = 15\)

Chọn đáp án C.

Câu 3:

Ta có: \(\left\{ \begin{array}{l}C_{10}^4 + C_{11}^4 = 540\\C_{11}^5 = 462\end{array} \right.\)\(\, \Rightarrow C_{10}^4 + C_{11}^4 \ne C_{11}^5 = 462\)

Chọn đáp án D.

Câu 4:

Điều kiện: \(x \ge 2\)

Ta có: \(A_x^2 = 110 \Leftrightarrow \dfrac{{x!}}{{\left( {x - 2} \right)!}} = 110\)

\( \Leftrightarrow x\left( {x - 1} \right) = 110 \Rightarrow x = 11\)

Chọn B

Câu 5:

Số véc tơ khác véc tơ không có điểm đầu và điểm cuối thuộc 2010 điểm đã cho là \(C_{2010}^2 = 4038090\) (cách)

Chọn đáp án B.

Câu 6:

Ta có: \(C_n^{n - k} = 28 \Leftrightarrow \dfrac{{n!}}{{\left( {n - k} \right)!k!}} = 28\)\( \Leftrightarrow \left\{ \begin{array}{l}n = 8\\k = 2\end{array} \right.\)

Chọn đáp án C.

Câu 7:

Số đường chéo của đa giác được xác định bởi công thức

\(\dfrac{{n\left( {n - 3} \right)}}{2} = 44 \)

\(\Leftrightarrow {n^2} - 3n - 88 = 0\)

\(\Leftrightarrow \left[ \begin{array}{l}n = 11\\n =  - 8\end{array} \right.\)

Chọn đáp án A.

Câu 8:

Điều kiện: \(n \ge 3\)

Ta có: \(A_n^3 = 20n \Leftrightarrow \dfrac{{n!}}{{\left( {n - 3} \right)!}} = 20n\)

\(\Leftrightarrow n\left( {n - 1} \right)\left( {n - 2} \right) = 20n\)

\( \Leftrightarrow \left( {n - 1} \right)\left( {n - 2} \right) = 20 \Leftrightarrow \left[ \begin{array}{l}n = 6\\n =  - 3\end{array} \right.\)

Chọn đáp án A.

Câu 9:

Số đường chéo của đa giác được xác định bằng công thức:

\(\dfrac{{n\left( {n - 3} \right)}}{2} = 135\)

\(\Leftrightarrow {n^2} - 3n - 270 = 0 \)

\(\Leftrightarrow \left[ \begin{array}{l}n = 18\\n =  - 15\end{array} \right.\)

Chọn đáp án D.

Câu 10:

Điều kiện: \(n \ge 2\)

Ta có: \(\dfrac{{C_{n + 1}^2}}{{C_n^2}} \ge \dfrac{3}{{10}}n\)

\(\Leftrightarrow \dfrac{{\dfrac{{\left( {n + 1} \right)!}}{{2!\left( {n - 1} \right)!}}}}{{\dfrac{{n!}}{{2!\left( {n - 2} \right)!}}}} \ge \dfrac{3}{{10}}n \)

\(\Leftrightarrow \dfrac{{n\left( {n + 1} \right)}}{{n\left( {n - 1} \right)}} \ge \dfrac{3}{{10}}n\)

\( \Leftrightarrow \dfrac{{n + 1}}{{n - 1}} \ge \dfrac{3}{{10}}n \)

\(\Leftrightarrow 10n + 10 \ge 3{n^2} - 3n\)

\( \Leftrightarrow 3{n^2} - 13n - 10 \le 0\)

\(\Leftrightarrow  - \dfrac{2}{3} \le n \le 5\)

Chọn đáp án D

Xemloigiai.com

Xem thêm lời giải Đề thi, đề kiểm tra Toán lớp 11

Dưới đây là danh sách Đề thi, đề kiểm tra Toán lớp 11 chọn lọc, có đáp án, cực sát đề chính thức theo nội dung sách giáo khoa Lớp 11.

Đề thi giữa kì 1 Toán 11

Đề thi học kì 1 Toán 11

Đề thi giữa kì 2 Toán 11

Đề thi học kì 2 Toán 11

Đề kiểm tra 15 phút Toán 11

Đề kiểm tra 1 tiết Toán 11

Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.