Đề kiểm tra 15 phút – Chương 2 – Đề số 9 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề thi kiểm tra 15 phút – Chương 2 – Đề số 9 – Đại số và giải tích 11

Đề bài

Câu 1: Cho phép thử có không gian mẫu \(\Omega  = \left\{ {1,2,3,4,5,6} \right\}\). Các cặp biến cố không đối nhau là

A. \(A = \left\{ 1 \right\};\,\,\,B = \left\{ {2,3,4,5,6} \right\}\)

B. \(C = \left\{ {1,4,5} \right\};\,\,\,B = \left\{ {2,3,6} \right\}\)

C. \(E = \left\{ {1,4,6} \right\};\,\,\,F = \left\{ {2,3} \right\}\)

D. \(\Omega ;\,\,\emptyset \)

Câu 2: Một chiếc máy có hai động cơ I và II hoạt động độc lập với nhau. Xác suất để động cơ I và động cơ II chạy tốt lần lượt là 0,8 và 0,7. Hãy tính xác suất để cả 2 động cơ chạy tốt

A. 0,56                                   B. 0,55

C. 0,58                                    D. 0,50

Câu 3: Một hộp đựng 4 bi xanh và 6 bi đỏ, lần lượt rút 2 viên bi. Xác suất để rút được một bi xanh và một bi đỏ là:

A. \(\dfrac{4}{{15}}\)

B. \(\dfrac{6}{{25}}\)

C. \(\dfrac{8}{{25}}\)

D. \(\dfrac{8}{{15}}\)

Câu 4: Gieo 2 con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm xuất hiện trên hai mặt của 2 con súc sắc đó không vượt quá 5 là:

A. \(\dfrac{2}{3}\)

B. \(\dfrac{5}{{18}}\)

C. \(\dfrac{8}{9}\)

D. \(\dfrac{7}{{18}}\)

Câu 5: Một bình chứa 16 viên bi với 7 viên bi trắng, 3 viên bi đỏ. Lấy ngẫu nhiên 3 viên bi. Tính xác suất lấy được cả 3 viên bi không có viên nào đỏ.

A. \(\dfrac{{1}}{{16}}\)

B. \(\dfrac{9}{{40}}\)

C. \(\dfrac{1}{{28}}\)

D. \(\dfrac{1}{{560}}\)

Câu 6: Có 5 nam, 5 nữ xếp thành một hàng dọc. Tính xác suất để nam, nữ đứng cạnh nhau:

A. \(\dfrac{1}{{125}}\)

B. \(\dfrac{1}{{126}}\)

C. \(\dfrac{1}{{36}}\)

D. \(\dfrac{{13}}{{36}}\)

Câu 7: Một hộp đựng 10 thẻ, đánh số từ 1 đến 10. Chọn ngẫu nhiên 3 thẻ. Gọi A là biến cố để tổng số của 3 thẻ được chọn không vượt quá 8. Số phần tử của biến cố A là:

A. 2                B. 3

C. 4                D. 5

Câu 8: Trên giá sách có 4 quyển sách Toán, 3 quyển sách Lý, 2 quyển sách Hóa. Lấy ngẫu nhiên 3 quyển sách. Tính xác suất để 3 quyển sách lấy ra đều là môn Toán

A. \(\dfrac{2}{7}\)             B. \(\dfrac{1}{{21}}\)

C. \(\dfrac{{37}}{{42}}\)            D. \(\dfrac{5}{{42}}\)

Câu 9: Một lớp có 20 học sinh nam và 18 học sinh nữ. Chọn ngẫu nhiên một học sinh. Tính xác suất chọn được một học sinh nữ

A. \(\dfrac{9}{{19}}\)                 B. \(\dfrac{{10}}{{19}}\)

C. \(\dfrac{1}{{38}}\)                  D. \(\dfrac{{19}}{9}\)

Câu 10: Sắp xếp 3 quyển sách Toán và 3 quyển sách Vật Lí lên một kệ dài. Xác suất để 2 quyển sách cùng một môn nằm cạnh nhau:

A. \(\dfrac{1}{5}\)                      B. \(\dfrac{9}{{10}}\)

C. \(\dfrac{1}{{20}}\)                      D. \(\dfrac{2}{5}\)

 

Lời giải chi tiết

1C

2A

3D

4B

5A

6B

7C

8B

9A

10B

Câu 1:

Cặp biến cố không đối nhau là \(E = \left\{ {1,4,6} \right\};\,\,\,F = \left\{ {2,3} \right\}\)

Chọn đáp án C.

Câu 2:

Xác suất để hai động cơ cùng chạy tốt là \(0,8.0,7 = 0,56\)

Chọn đáp án A.

Câu 3:

Không gian mẫu là \(C_{10}^2\)

Xác suất để có một bi xanh, 1 bi đỏ là \(C_4^1C_6^1\)

Xác suất cần tìm là \(P = \dfrac{{C_4^1.C_6^1}}{{C_{10}^2}} = \dfrac{8}{{15}}\)

Chọn đáp án D.

Câu 4:

Không gian mẫu là 36.

Gieo 2 con súc sắc được các chấm có tổng không vượt quá 5 là:

\(\left( {1;1} \right),\left( {1;2} \right),\left( {1;3} \right),\)\(\left( {1;4} \right),\left( {2;1} \right),(2;2),(2;3),\)\(\left( {3;1} \right),(3;2),\left( {4;1} \right)\)

Khi đó \(P = \frac{{10}}{{36}} = \frac{5}{{18}}\).

Chọn đáp án B.

Câu 5:

Không gian mẫu là \(C_{16}^3\)

Số cách lấy 3 viên bi không có đỏ là \(C_7^3\)

Xác suất cần tìm là: \(P = \dfrac{{C_7^3}}{{C_{16}^3}} = \dfrac{1}{{16}}\)

Chọn đáp án A

Câu 6:

Xét 2 bạn nam khi bạn nam hoặc bạn nữ đứng đầu.

+ Xếp 5 nam vào 5 vị trí cố định có 5! cách

+ Xếp 5 nữ vào 5 vị trí cố định trống xen kẽ nam có 5! cách

Vậy xác suất cần tìm là \(\dfrac{{2.5!.5!}}{{10!}} = \dfrac{1}{{126}}\)

Chọn đáp án B.

Câu 7:

Các khả năng có lợi cho biến cố A là \(\left\{ {\left( {1;2;3} \right),\left( {1;3;4} \right)} \right\}\)

Chọn đáp án A.

Câu 8:

Không gian mẫu là 84.

Số cách chọn 3 trong 4 quyển toán là \(C_4^3\).

Xác suất cần tìm là \(P = \dfrac{{C_4^3}}{{84}} = \dfrac{1}{{21}}\).

Chọn đáp án B.

Câu 9:

Không gian mẫu là 38

Chọn 1 học sinh nữ có 18 cách chọn.

Xác suất cần tìm là \(P = \frac{{18}}{{38}} = \frac{9}{{19}}\).

Chọn đáp án A.

Câu 10:

Sắp xếp 3 quyển sách toán và 3 quyển sách lý lên cùng một kệ có \(n\left( \Omega  \right) = 6!\)

Đặt 2 nhóm sách lên kệ có 2! cách, mỗi cách sắp xếp toán có 3! cách, sắp xếp 3 quyển sách lý có 3! cách.

Vậy số cách xếp 2 quyển sách cùng một môn nằm cạnh nhau là \(2!.3!.3!\) cách

Xác suất cần tìm là: \(\dfrac{{2!.3!.3!}}{{6!}} = \dfrac{1}{{10}}\)

Xemloigiai.com

Xem thêm lời giải Đề thi, đề kiểm tra Toán lớp 11

Dưới đây là danh sách Đề thi, đề kiểm tra Toán lớp 11 chọn lọc, có đáp án, cực sát đề chính thức theo nội dung sách giáo khoa Lớp 11.

Đề thi giữa kì 1 Toán 11

Đề thi học kì 1 Toán 11

Đề thi giữa kì 2 Toán 11

Đề thi học kì 2 Toán 11

Đề kiểm tra 15 phút Toán 11

Đề kiểm tra 1 tiết Toán 11

Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.