Đề kiểm tra 15 phút – Chương 2 – Đề số 6 – Đại số và giải tích 11

Đáp án và lời giải chi tiết Đề thi kiểm tra 15 phút – Chương 2 – Đề số 6 – Đại số và giải tích 11

Đề bài

Câu 1: Từ một nhóm 5 người, chọn ra các nhóm ít nhất 2 người. Hỏi có bao nhiêu cách chọn:

A. 25                                       B. 26

C. 31                                       D. 32

Câu 2: Cho \(C_n^{n - 3} = 1140\). Tính \(A = \,\dfrac{{A_n^6 + A_n^5}}{{A_n^4}}\)

A. 256                                    B. 342

C. 231                                     D. 129

Câu 3: Trong một hộp bánh có 6 loại bánh nhân thịt và 4 loại bánh nhân đậu xanh. Có bao nhiêu cách lấy ra 6 bánh để phát cho các em thiếu nhi.

A. 240                                    B. 151200

C. 14200                                 D. 210

Câu 4: Nếu \(2A_n^4 = 3A_{n - 1}^4\) thì n bằng

A. n = 11                                B. n = 12

C. n = 13                                D. n = 14

Câu 5: Đội tuyển học sinh giỏi của một trường gồm 18 em, trong đó có 7 học sinh khối 12, 6 học sinh khối 11 và 5 học sinh khối 10. Hỏi có bao nhiêu cách cử 8 học sinh đi dự đại hội sao cho mỗi khối có ít nhất 1 học sinh được chọn

A. 40551                                B. 42802

C. 41811                                 D. 32023

Câu 6: Cho 2 đường thẳng d1 và d2  song song với nhau. Trên d1 có 10 điểm phân biệt, trên d2 có n điểm phân biệt \((n \ge 2)\). Biết có 2800 tam giác có đỉnh là các điểm nói trên. Tìm n?

A. 20                                       B. 21

C. 30                                       D. 32

Câu 7: Tìm \(x \in \mathbb{N}\), biết \(C_x^0 + C_x^{x - 1} + C_x^{x - 2} = 79\)

A. \(x = 13\)                            B. \(x = 17\)

C. \(x = 16\)                            D. \(x = 12\)

Câu 8: Tìm \(n\) biết \(C_n^0 + 2C_n^1 + 4C_n^2 + ... + {2^n}C_n^n = 243\)

A. \(n = 4\)                              B. \(n = 5\)

C. \(n = 6\)                              D. \(n = 7\)

Câu 9: Có 8 quả cân lần lượt là 1kg, 2kg, 3kg, 4kg, 5kg, 6kg, 7kg, 8kg. Chọn ngẫu nhiên 3 quả cân trong 8 quả cân đó. Tính xác suất để trọng lượng 3 quả cân được chọn không vượt quá 9kg.

A. \({1 \over {15}}\)                              B. \({1 \over 7}\)

C. \({1 \over {28}}\)                                D. \({1 \over 8}\)

Câu 10: Giải phương trình sau \(24(A_{x + 1}^3 - C_x^{x - 4}) = 23A_x^4\)

A. 3                                         B. 4

C. 5                                         D. 6

Lời giải chi tiết

1B

2A

3D

4B

5C

6A

7D

8B

9D

10C

Câu 1:

Theo yêu cầu bài toán:

+ Nhóm có 2 người có \(C_5^2 = 10\)

+ Nhóm có 3 người có \(C_5^3 = 10\)

+ Nhóm có 4 người có 5 cách

+ Nhóm có 5 người có 1 cách

Vậy có tất cả 26 cách.

Chọn đáp án B.

Câu 2:

Ta có: \(C_n^{n - 3} = 1140 \Leftrightarrow \dfrac{{n!}}{{\left( {n - 3} \right)!.3!}} = 1140\)

\(\Leftrightarrow n\left( {n - 1} \right)\left( {n - 2} \right) = 6840\)

\( \Leftrightarrow \left( {{n^2} - n} \right)\left( {n - 2} \right) = 6840\)

\(\Leftrightarrow {n^3} - 2{n^2} - {n^2} + 2n = 6840\)

\( \Leftrightarrow n = 20\)

Với \(n = 20\) ta có: \(A = \,\dfrac{{A_{20}^6 + A_{20}^5}}{{A_{20}^4}} = 256\)

Chọn đáp án A.

Câu 3:

Số cách lấy ra 6 bánh phát cho các em thiếu nhi là: \(C_{10}^6 = 210\) (cách)

Chọn đáp án D.

Câu 4:

Điều kiện: \(n \ge 5\)

Ta có: \(2A_n^4 = 3A_{n - 1}^4 \)

\(\Leftrightarrow 2\dfrac{{n!}}{{\left( {n - 4} \right)!}} = 3\dfrac{{\left( {n - 1} \right)!}}{{\left( {n - 5} \right)!}}\)

\( \Leftrightarrow 2n\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right) \)\(= 3\left( {n - 4} \right)\left( {n - 3} \right)\left( {n - 2} \right)\left( {n - 1} \right)\)

\( \Leftrightarrow 2n = 3\left( {n - 4} \right) \Leftrightarrow n = 12\)

Chọn đáp án A.

Câu 5:

Số cách chọn 8 trong 18 em là \(C_{18}^8\).

Ta đếm số cách chọn 8 em mà không có đủ cả 3 khối.

Dễ thấy không có trường hợp nào là chỉ chọn được 8 em trong cùng một khối (do \(8 > 7,8 > 6,8 > 5\))

Nên chỉ có thể xảy ra trường hợp 8 em chọn được thuộc đúng 2 khối.

TH1: 8 em chọn được thuộc khối 12 và 11 có \(C_{13}^8\) cách chọn.

TH2: 8 em chọn được thuộc khối 11 và 10 có \(C_{11}^8\) cách chọn.

TH3: 8 em chọn được thuộc khối 12 và 10 có \(C_{12}^8\) cách chọn.

Do đó có \(C_{13}^8 + C_{11}^8 + C_{12}^8 = 1947\) cách chọn 8 em mà chỉ nằm trong 2 khối.

Vậy có \(C_{18}^8 - 1947 = 41811\) cách chọn.

Chọn đáp án C

Câu 6:

Số tam giác được tạo thành từ đề bài: \(C_{10}^2C_n^1 + C_{10}^1C_n^2\)

Theo giả thiết ta có: \(C_{10}^2C_n^1 + C_{10}^1C_n^2 = 2800\)

\( \Leftrightarrow 45\dfrac{{n!}}{{\left( {n - 1} \right)!}} + 10\dfrac{{n!}}{{2!\left( {n - 2} \right)!}} = 2800\)

\( \Leftrightarrow 45n + 5n\left( {n - 1} \right) = 2800\)

\( \Leftrightarrow 5{n^2} + 40n - 2800 = 0 \Leftrightarrow \left[ \begin{array}{l}n = 20\\n =  - 28\end{array} \right.\)

Chọn đáp án A.

Câu 7:

Ta có: \(C_x^0 + C_x^{x - 1} + C_x^{x - 2} = 79\)

\( \Leftrightarrow 1 + \dfrac{{x!}}{{\left( {x - 1} \right)!}} + \dfrac{{x!}}{{\left( {x - 2} \right)!2!}} = 79\)

\( \Leftrightarrow x + \dfrac{{x\left( {x - 1} \right)}}{2} = 78 \Leftrightarrow {x^2} + x - 156 = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}x = 12\\x =  - 13\end{array} \right.\)

Chọn đáp án D.

Câu 8:

Ta có: \({\left( {1 + x} \right)^n} = \sum\limits_n^{k = 0} {C_n^k} {x^k}\)

\(\Rightarrow {3^n} = {2^k}C_n^k = C_n^0 + 2C_n^1 +  \ldots  + {2^n}C_n^n = 243\)

Khi đó ta có: \({3^n} = 243 \Leftrightarrow n = 5.\)

Chọn đáp án B.

Câu 9:

Chọn ngẫu nhiên 3 quả cân trong 8 quả cân ta có \(\left| \Omega  \right| = C_8^3 = 56\)

Gọi A là biến cố chọn được 3 quả cân và tổng trọng lượng 3 quả cân không vượt quá 9 kg.

\(\begin{array}{l}1 + 2 + 3 = 6 < 9\\1 + 2 + 4 = 7 < 9\\1 + 2 + 5 = 8 < 9\\1 + 2 + 6 = 9\\1 + 3 + 4 = 8 < 9\\1 + 3 + 5 = 9\\2 + 3 + 4 = 9\end{array}\)

Nên \(\left| A \right| = 7\)

Vậy \(P(A) = \dfrac{{\left| A \right|}}{{\left| \Omega  \right|}} = \dfrac{7}{{56}} = \dfrac{1}{8}\)

Chọn đáp án D

Câu 10:

Ta có: \(24(A_{x + 1}^3 - C_x^{x - 4}) = 23A_x^4\)

\(\Leftrightarrow 24\left( {\dfrac{{\left( {x + 1} \right)!}}{{\left( {x - 2} \right)!}} - \dfrac{{x!}}{{\left( {x - 4} \right)!4!}}} \right) = 23\dfrac{{x!}}{{\left( {x - 4} \right)!}}\)

\( \Leftrightarrow 24\left[ {\left( {x - 1} \right)x\left( {x + 1} \right) - \dfrac{{x\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)}}{{4!}}} \right] \)\(= 23x\left( {x - 1} \right)\left( {x - 2} \right)\left( {x - 3} \right)\)

\( \Leftrightarrow 24\left[ {x + 1 - \dfrac{{{x^2} - 5x + 6}}{{24}}} \right] = 23\left( {{x^2} - 5x + 6} \right)\)

\( \Leftrightarrow 24x + 24 - {x^2} + 5x - 6 = 23{x^2} - 115x + 138\)

\( \Leftrightarrow 24{x^2} - 144x + 120 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = 1\end{array} \right.\)

Chọn đáp án C

Xemloigiai.com

Xem thêm lời giải Đề thi, đề kiểm tra Toán lớp 11

Dưới đây là danh sách Đề thi, đề kiểm tra Toán lớp 11 chọn lọc, có đáp án, cực sát đề chính thức theo nội dung sách giáo khoa Lớp 11.

Đề thi giữa kì 1 Toán 11

Đề thi học kì 1 Toán 11

Đề thi giữa kì 2 Toán 11

Đề thi học kì 2 Toán 11

Đề kiểm tra 15 phút Toán 11

Đề kiểm tra 1 tiết Toán 11

Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2024 ngắn gọn, chi tiết dễ hiểu.